Hierarchical Bayesian Analysis of Complex Sample Survey Data

复杂样本调查数据的分层贝叶斯分析

基本信息

  • 批准号:
    8193219
  • 负责人:
  • 金额:
    $ 28.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-17 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The proposed research will use hierarchical Bayesian modeling to tackle three interrelated problems in the analysis of population-based survey data: accounting for unequal probabilities of inclusion due to sample design or post-sampling non-response; accounting for non-ignorable missingness in item-level data; and combining information from multiple complex survey data sets to obtain more accurate and efficient estimates of the population quantities. We intend to develop robust models that can provide "data- driven" weight trimming procedures for a general class of population statistics under a variety of sample designs; develop selection models that accommodate non-ignorable missingness mechanisms in the context of complex survey designs; and develop methods to combine data from multiple surveys by creating synthetic populations from each survey and then combining these populations to develop estimates. While our methods will be applicable to a wide variety of analytic procedures, we will focus on small area or small domain estimation in particular, since the issues that this proposal intends to address are often most acute in the setting. Domain estimators with highly variable weights can have poor mean square error properties. Associations between nonignorable nonresponse and areas/domains can make between-domain comparisons unreliable. Small samples in a given domain in one survey can be compensated by data from other surveys, if correct procedures are in place to account for complex sample design, as well as the possibility of non-response bias and measurement error. We will consider three major applications: analyses to determine associations between birth weight and cardiovascular risk factors in children using the National Health and Nutrition Examination Survey, to determine the prevalence of cancer behavioral risk factors among adults by combining data from the Behavioral Risk Factor Surveillance Survey and the National Health Interview Survey, and to explore mortality compression among the elderly in the Americans Changing Lives panel survey. Analyses will focus on small domains (race/ethnic minorities, and counties/states, as examples). Though the method is motivated from a Bayesian perspective, the results will be evaluated from the design-based perspective using analytical and simulation techniques. We will also focus on developing user-friendly software to implement the new methods. PUBLIC HEALTH RELEVANCE: In an increasingly diverse nation, the need is increasing to target public health studies and delivery to small areas, be they geographic or demographic (such as ethnic minorities). Health surveys are a rich source of data for such efforts, but methods for extracting information about small areas remain undeveloped. The proposed work will develop new methods for dealing with some of the problems that small area estimation poses, including unstable estimates due to small sample sizes and unequal probabilities of selection, and biased estimates due to differences between people who chose to participate in the surveys and those who refused or could not be contacted. The work can also improve the efficient use of data currently collected by developing new ways of combining data from multiple surveys.
描述(由申请人提供):拟议的研究将使用分层贝叶斯模型来解决基于人口的调查数据分析中的三个相互关联的问题:由于样本设计或抽样后无反应而导致的不平等纳入概率;考虑项目级数据中不可忽略的缺失;并结合多个复杂调查数据集的信息,以获得更准确和有效的人口数量估计。我们打算开发健壮的模型,可以在各种样本设计下为一般类别的人口统计提供“数据驱动”的权重修剪程序;开发选择模型,以适应复杂调查设计中不可忽视的缺失机制;并开发方法,通过从每个调查中创建合成人口,然后将这些人口结合起来进行估计,从而将来自多个调查的数据结合起来。虽然我们的方法将适用于各种各样的分析过程,但我们将特别关注小区域或小领域的估计,因为本建议打算解决的问题通常在设置中最尖锐。具有高度可变权值的域估计器可能具有较差的均方误差特性。不可忽略的非响应和区域/域之间的关联可以使域之间的比较不可靠。如果采用正确的程序来考虑复杂的样本设计,以及可能存在的无反应偏差和测量误差,则可以用其他调查的数据来补偿一次调查中给定领域的小样本。我们将考虑三个主要应用:使用国家健康和营养检查调查来分析确定儿童出生体重和心血管危险因素之间的关系,通过结合行为危险因素监测调查和国家健康访谈调查的数据来确定成人中癌症行为危险因素的患病率,以及在美国人改变生活小组调查中探索老年人的死亡率压缩。分析将集中在小领域(如种族/少数民族,县/州)。虽然该方法是从贝叶斯的角度出发的,但结果将从基于设计的角度使用分析和模拟技术进行评估。我们也会专注于开发用户友好的软件来实施这些新方法。公共卫生相关性:在一个日益多样化的国家,越来越需要将公共卫生研究的目标和成果提供给小区域,无论是地理上的还是人口上的(如少数民族)。健康调查是此类努力的丰富数据来源,但提取小地区信息的方法仍未开发。拟议的工作将开发新的方法来处理小面积估计所带来的一些问题,包括由于小样本量和不平等的选择概率而导致的不稳定估计,以及由于选择参加调查的人与拒绝或无法联系的人之间的差异而导致的有偏见的估计。这项工作还可以通过开发结合多个调查数据的新方法,提高目前收集数据的有效利用。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling.
基于贝叶斯惩罚样条模型的不等概率抽样中有限总体比例的推理。
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Chen,Qixuan;Elliott,MichaelR;Little,RoderickJA
  • 通讯作者:
    Little,RoderickJA
Synthetic Multiple-Imputation Procedure for Multistage Complex Samples.
  • DOI:
    10.1515/jos-2016-0011
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Zhou H;Elliott MR;Raghunathan TE
  • 通讯作者:
    Raghunathan TE
Bayesian inference for finite population quantiles from unequal probability samples.
根据不等概率样本对有限总体分位数进行贝叶斯推断。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Chen,Qixuan;Elliott,MichaelR;Little,RoderickJA
  • 通讯作者:
    Little,RoderickJA
Weighted Dirichlet Process Mixture Models to Accommodate Complex Sample Designs for Linear and Quantile Regression.
  • DOI:
    10.2478/jos-2021-0004
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Elliott MR;Xia X
  • 通讯作者:
    Xia X
Inferences on Small Area Proportions.
小面积比例的推论。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL R. ELLIOTT其他文献

MICHAEL R. ELLIOTT的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL R. ELLIOTT', 18)}}的其他基金

Addressing Disclosure Risk of Contextualized Microdata in Survey Design
解决调查设计中情境化微观数据的披露风险
  • 批准号:
    9204318
  • 财政年份:
    2012
  • 资助金额:
    $ 28.91万
  • 项目类别:
IN VIVO ROLE OF CAVEOLIN-1 IN MODULATING PHOTORECEPTOR FUNCTION
CAVEOLIN-1 在调节光感受器功能中的体内作用
  • 批准号:
    8360406
  • 财政年份:
    2011
  • 资助金额:
    $ 28.91万
  • 项目类别:
Methods of Studying Variability as a Predictor of Health Status
研究变异性作为健康状况预测因子的方法
  • 批准号:
    8143266
  • 财政年份:
    2010
  • 资助金额:
    $ 28.91万
  • 项目类别:
Methods of Studying Variability as a Predictor of Health Status
研究变异性作为健康状况预测因子的方法
  • 批准号:
    7788616
  • 财政年份:
    2010
  • 资助金额:
    $ 28.91万
  • 项目类别:
IN VIVO ROLE OF CAVEOLIN-1 IN MODULATING PHOTORECEPTOR FUNCTION
CAVEOLIN-1 在调节光感受器功能中的体内作用
  • 批准号:
    8168351
  • 财政年份:
    2010
  • 资助金额:
    $ 28.91万
  • 项目类别:
Hierarchical Bayesian Analysis of Complex Sample Survey Data
复杂样本调查数据的分层贝叶斯分析
  • 批准号:
    7730323
  • 财政年份:
    2009
  • 资助金额:
    $ 28.91万
  • 项目类别:
Hierarchical Bayesian Analysis of Complex Sample Survey Data
复杂样本调查数据的分层贝叶斯分析
  • 批准号:
    7895668
  • 财政年份:
    2009
  • 资助金额:
    $ 28.91万
  • 项目类别:
IN VIVO ROLE OF CAVEOLIN-1 IN MODULATING PHOTORECEPTOR FUNCTION
CAVEOLIN-1 在调节光感受器功能中的体内作用
  • 批准号:
    7959978
  • 财政年份:
    2009
  • 资助金额:
    $ 28.91万
  • 项目类别:
IN VIVO ROLE OF CAVEOLIN-1 IN MODULATING PHOTORECEPTOR FUNCTION
CAVEOLIN-1 在调节光感受器功能中的体内作用
  • 批准号:
    7720541
  • 财政年份:
    2008
  • 资助金额:
    $ 28.91万
  • 项目类别:
IN VIVO ROLE OF CAVEOLIN-1 IN KNOCKOUT AND TRANSGENIC MOUSE RETINA
CAVEOLIN-1 在敲除和转基因小鼠视网膜中的体内作用
  • 批准号:
    7610509
  • 财政年份:
    2007
  • 资助金额:
    $ 28.91万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了