Novel Analytical and Experimental Approaches for Predicting the Biological Effects of Mixtures
预测混合物生物效应的新分析和实验方法
基本信息
- 批准号:10020409
- 负责人:
- 金额:$ 45.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAgonistAndrogen ReceptorAromatase InhibitorsBinding SitesBiologicalCell Culture SystemCell Culture TechniquesCell LineCell ProliferationChemicalsComplexComplex MixturesComputer ModelsDataDevelopmentDietDiseaseDistalDoseEnvironmental HealthEstrogen Receptor 2Estrogen Receptor alphaEstrogen Receptor betaEstrogen receptor positiveEstrogensExposure toFoundationsGREB1 geneGenesHealthHomodimerizationIn VitroIndividualLigand BindingLigandsMCF7 cellMethodsModelingMolecular Mechanisms of ActionMusNational Institute of Environmental Health SciencesOutcomePPAR gammaPathway interactionsPharmacologic SubstancePharmacologyPhysiologicalProcess AssessmentRXRReceptor ActivationRecommendationReporterResponse ElementsRiskRisk AssessmentSystemTestingToxic effectToxicity TestsUncertaintyUnited States National Institutes of HealthWorkadipocyte differentiationaryl hydrocarbon receptor ligandbasebiological systemsdensitydimerenvironmental chemicalimprovedin vitro testingin vivointerestmathematical modelnovelpredictive modelingreceptorreceptor bindingreceptor functionresponse
项目摘要
Project Summary / Abstract
Assessing the health effects of exposure to complex mixtures is a priority for NIEHS: “It is imperative to
develop methods to assess the health effects associated with complex exposures in order to minimize their
impact on the development of disease.” The vast number of potential mixtures includes environmental
chemicals, pharmaceuticals, dietary and endogenous compounds. Concentration addition/dose addition (CA)
is a predictive method widely used for compounds that act by similar mechanisms and provides a foundation
for risk assessment. However, CA cannot make predictions for mixtures that contain full and partial receptor
agonists at effect levels above that of the least efficacious component. Since partial agonists are common, we
developed Generalized Concentration Addition (GCA) to address this need. GCA has been applied to systems
where ligands compete for a single receptor binding site, successfully predicting experimental data for mixtures
of AhR ligands and of PPARγ ligands. This project focuses on ligand-receptor systems as they are biologically
important, initiate many toxicity pathways, and are amenable to modeling and rapid testing. Our overall
hypothesis is that GCA applies to all receptor systems in which ligands reversibly compete for the same
receptor binding sites. Based on mechanistic information, we use pharmacologically-based mathematical
modeling to estimate the biological effect of mixtures; we test the predictions with empirical data. Here, we
propose to test the ability of GCA to predict the biological effects of more complex receptors and mixture
scenarios. Specific Aim 1 tests the ability of GCA to predict receptor activation by mixtures of ligands for
receptors that homodimerize. The predictions will be tested using reporter cell lines for AR and ERα and a
spectrum of ligands (full agonists, partial agonists, competitive antagonists). Applicability of GCA will be further
examined using Tox21 data for single chemicals and mixtures. Specific Aim 2 tests the ability of GCA to predict
mixture effects for downstream biological endpoints. We hypothesize that GCA predicts a downstream effect if
the effect is a function of receptor activation. This will be tested for proximal and distal effects of mixtures of ER
ligands (in vitro) and PPARγ ligands (in vitro and in vivo). Specific Aim 3 examines how similar mechanisms
must be for GCA to apply. Models for several “similar” mechanisms will be compared with empirical data: 1)
mixtures that contain selective receptor modulators for ERα and PPARγ; 2) heterodimer partners that each
bind ligands (ERα:ERβ, PPARγ:RXR) and 3) mixtures containing an aromatase inhibitor (altering the amount
of natural ligand) plus ERα ligands. This project builds upon the Tox21 recommendations of examining
perturbations of toxicity pathways, increased use of in vitro testing and computational models and will generate
a powerful approach for improving risk assessment of mixtures.
项目总结/摘要
评估接触复杂混合物对健康的影响是NIEHS的优先事项:“必须
制定评估与复合照射有关的健康影响的方法,以尽量减少
对疾病发展的影响。”大量的潜在混合物包括环境
化学品、药物、饮食和内源性化合物。浓度增加/剂量增加(CA)
是一种广泛用于通过类似机制起作用的化合物的预测方法,
进行风险评估。然而,CA不能对含有全部和部分受体的混合物进行预测,
激动剂的作用水平高于最低有效组分的作用水平。由于部分激动剂是常见的,我们
开发了广义浓度加成(GCA)来满足这一需求。GCA已应用于系统
其中配体竞争单个受体结合位点,成功预测混合物的实验数据
AhR配体和PPARγ配体。这个项目的重点是配体-受体系统,因为它们在生物学上
重要的是,启动许多毒性途径,并适合建模和快速测试。我们的整体
假设GCA适用于所有受体系统,其中配体可逆地竞争相同的
受体结合位点。基于机制信息,我们使用基于药理学的数学模型,
建模来估计混合物的生物效应;我们用经验数据来测试预测。这里我们
建议测试GCA预测更复杂受体和混合物的生物效应的能力
场景特异性目的1测试GCA预测配体混合物对受体活化的能力,
同二聚化的受体。将使用AR和ERα的报告细胞系以及
配体谱(完全激动剂、部分激动剂、竞争性拮抗剂)。GCA的适用性将进一步
使用Tox 21数据对单一化学品和混合物进行了审查。具体目标2测试GCA预测的能力
下游生物学终点的混合效应。我们假设GCA预测下游效应,如果
该效应是受体激活的函数。这将测试ER混合物的近端和远端效应。
配体(体外)和PPARγ配体(体外和体内)。具体目标3研究了类似机制如何
必须是GCA才能申请。几个“类似”机制的模型将与经验数据进行比较:1)
含有ERα和PPARγ的选择性受体调节剂的混合物; 2)异二聚体伴侣,
结合配体(ERα:ERβ,PPARγ:RXR)和3)含有芳香酶抑制剂的混合物(改变量
天然配体)加ERα配体。该项目建立在Tox 21建议的基础上,
干扰毒性途径,增加使用体外测试和计算模型,并将产生
改进混合物风险评估的一种强有力的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas F Webster其他文献
Thomas F Webster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas F Webster', 18)}}的其他基金
Development and Testing of Response Surface Methods for Investigating the Epidemiology of Exposure to Mixtures
用于调查混合物暴露流行病学的响应面方法的开发和测试
- 批准号:
10088444 - 财政年份:2018
- 资助金额:
$ 45.84万 - 项目类别:
Development and Testing of Response Surface Methods for Investigating the Epidemiology of Exposure to Mixtures
用于调查混合物暴露流行病学的响应面方法的开发和测试
- 批准号:
9439849 - 财政年份:2018
- 资助金额:
$ 45.84万 - 项目类别:
Novel Analytical and Experimental Approaches for Predicting the Biological Effects of Mixtures
预测混合物生物效应的新分析和实验方法
- 批准号:
10200039 - 财政年份:2017
- 资助金额:
$ 45.84万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 45.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 45.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 45.84万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 45.84万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 45.84万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 45.84万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 45.84万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 45.84万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 45.84万 - 项目类别:
Fentanyl Addiction: Individual Differences, Neural Circuitry, and Treatment with a GLP-1 Receptor Agonist
芬太尼成瘾:个体差异、神经回路和 GLP-1 受体激动剂治疗
- 批准号:
10534864 - 财政年份:2023
- 资助金额:
$ 45.84万 - 项目类别: