Enhanced x-ray angiography analysis and interpretation using deep learning
使用深度学习增强 X 射线血管造影分析和解释
基本信息
- 批准号:10000961
- 负责人:
- 金额:$ 70.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-07 至 2023-07-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAngiographyAnteriorArchitectureAreaCephalicCharacteristicsChest PainClassificationClinicalComputer Vision SystemsComputersCoronaryCoronary ArteriosclerosisCoronary StenosisCoronary VesselsCost of IllnessDataData SetDevelopmentDiagnosisDiagnostic radiologic examinationEngineeringEvaluationEvaluation StudiesGoalsGoldHealthcare SystemsHeartImageInstitutional Review BoardsInterventionIntraobserver VariabilityLateralLeadLearningLeftLesionMethodologyModelingMorbidity - disease rateNational Heart, Lung, and Blood InstituteNetwork-basedNeural Network SimulationObservational StudyOutcomePathway AnalysisPatient-Focused OutcomesPatientsPerformancePhasePhysiciansProceduresProcessReaderReadingReportingResearchRoentgen RaysSelf-Help DevicesSeveritiesSpecificityStenosisStructureSystems AnalysisTechnologyTestingTranslatingTreesVisualVisual AidWorkbaseclinically relevantcohortcomputer aided detectionconvolutional neural networkcoronary lesioncostdeep learningdeep neural networkdiagnostic accuracygroup interventionimage processingimaging studyimprovedinnovationnovelprospectiverecursive neural networkspatiotemporalstandard of caretooltreatment planningusability
项目摘要
Enhanced x-ray angiography analysis and
interpretation using deep learning
Over 1 Million diagnostic X-ray angiograms are performed annually in the US to guide treatment of coronary
artery disease (CAD) and cost over $12 billion. Despite being the clinical standard of care, visual interpretation
is prone to inter- and intra-observer variability. Recently as part of the NHLBI supported Prospective Multicenter
Imaging Study for Evaluation of Chest Pain (PROMISE) trial, our research team showed that cardiologists
misinterpreted over 19% of angiograms obstructive CAD (greater than 50% vessel stenosis). Given the centrality
of angiographic interpretation to the development of a treatment plan, reduced accuracy can lead to unnecessary
poor outcomes and increased costs to our healthcare system. The potential impact is significant given that
increasing interpretation accuracy by 1% could positively benefit over 10,000 patients each year in the US alone.
Thus, our team is developing an X-ray angiographic analysis system (DeepAngio) driven by deep learning
technology to enhance physician interpretation. In Phase I, the PROMISE dataset of over 1,000 angiograms was
used to build our Convolutional Neural Network (CNN) based deep learning model. We achieved a 0.89 Area
Under the Receiving Operating Characteristic (AUROC) for identifying obstructive CAD in images with expert
scored ground truth (exceeding our proposed Phase I milestone of >0.85 AUROC).
Now in Phase II, we present an innovative image learning pipeline to incorporate anatomical and spatiotemporal
information from video sequences (similar to a cardiologist reader). A full end to end X-ray angiography video
processing pipeline will be developed and tested in a new cohort of 10,000 patient angiograms with normal and
graded abnormal CAD. Our patch-based frame analysis model will advance to CNN full frame-based
classification of angiographic views (left heart vs. right heart) and segmentation of coronary vessels (LAD, LCx,
and RCA). A multiple frame analysis approach enabled by a Recursive Neural Network (RNN) will equip our
model with dynamic temporal information to estimate lesion presence accurately. Our goal for Phase II is to
improve reading specificity and translate our Phase I proof of concept research findings into a clinically
meaningful tool. A multi-reader, multi-case evaluation by a group of interventional cardiologists interpreting with
and without DeepAngio predictions will assess clinical usability to improve coronary stenosis estimation.
In the long term, we hope the combination of a cardiologist with DeepAngio as an assistive tool will improve the
clinical accuracy of angiographic interpretation.
增强x线血管造影分析和
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Henao Giraldo其他文献
Ricardo Henao Giraldo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Henao Giraldo', 18)}}的其他基金
Machine learning driven transthoracic echocardiographic analysis and screening for cardiac amyloidosis
机器学习驱动的经胸超声心动图分析和心脏淀粉样变性筛查
- 批准号:
10081836 - 财政年份:2020
- 资助金额:
$ 70.25万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 70.25万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 70.25万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 70.25万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 70.25万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 70.25万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 70.25万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 70.25万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 70.25万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 70.25万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 70.25万 - 项目类别:
Research Grant