BLR&D Research Career Scientist Award Application
BLR
基本信息
- 批准号:10047283
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAntibodiesAntibody TherapyApoptosisAreaAtherosclerosisAwardBiologyBlood VesselsCancer BiologyCardiologyCardiovascular DiseasesCell Differentiation processCell physiologyCellsCessation of lifeClinical TrialsCollaborationsComplexDevelopmentDiabetes MellitusDiseaseDrug resistanceEnd stage renal failureGene Expression RegulationGoalsHealthHealth Care CostsHyperglycemiaInterventionInvestigationLongevityMalignant NeoplasmsMalignant neoplasm of pancreasMedical centerMedicineModelingMolecularMolecular TargetNephrologyOxidative StressPathogenesisPathogenicityPathologyPatient CarePhenotypePhysiciansPoly(ADP-ribose) PolymerasesPrevention strategyPublishingQuality of lifeReceptor SignalingRegulationResearchResistanceRoleScientistSignal PathwaySignal TransductionSmooth Muscle MyocytesTNFRSF10B geneTherapeuticTissuesTranslatingTranslational ResearchUp-RegulationVascular DiseasesVascular Smooth MuscleVascular calcificationVeteransantibody immunotherapyarterial stiffnessbasebonecalcificationcancer cellcancer drug resistancecancer therapycareergene functionimprovedinsightinterestknockout genemacrophagemilitary veteranmouse modelnovelosteogenicpancreatic neoplasmprogramsreceptorrecruitrefractory cancerstem cellstherapeutic targettherapy resistanttranscription factortumorigenesis
项目摘要
Project Summary/Abstract
My major research interest is to understand molecular mechanisms of gene regulation and function in
the pathogenesis of cancer and cardiovascular disease, two major health burdens for our Veterans. We seek
to determine the fundamental molecular signals that regulate cellular function, and translate the findings in the
pathogenesis of disease using animal models, so as to identify novel molecular targets and strategies for
prevention and intervention of disease.
Translational research on cancer pathogenesis and resistance to therapy. We have been
focused on the death receptor signaling pathways in regulating apoptosis of cancer cells and their roles in
cancer tumorigenesis and resistance to therapy. Our studies have demonstrated that modulating the Death-
Inducing Signaling Complex (DISC) determines the downstream survival and apoptosis signals. Recently, we
discovered a novel regulator, poly(ADP-ribose) polymerase 1 (PARP1), in the death receptor-5 DISC that
contribute to the resistance of pancreatic cancer to therapy, a critical hurdle for effective cancer treatment.
Based on this novel finding, our current VA merit review award (2014-2018) is to delineate the mechanisms
underlying DISC-associated PARP1 in regulating pancreatic cancer resistance to antibody immunotherapy with
a humanized anti-death receptor 5 antibody (TRA-8/CS1008). I will continue my long-term collaboration with
VA physician scientist, Jay M McDonald, MD (Pathology, Birmingham VA) and the inventor of TRA-8/CS1008,
Tong Zhou, MD (Medicine, UAB). As CS1008 therapy has been effective in clinical trials for some cancer but
resistant in others including pancreatic tumors, the overarching goal for our investigations is to elucidate the
molecular mechanisms and identify new compounds that sensitize pancreatic cancer to TRA-8-induced
apoptosis, thus overriding drug resistance and leading to successful therapies.
Differentiation and reprogramming of vascular smooth muscle cells in vascular disease.
Phenotypic plasticity of vascular smooth muscle cells (VSMC) provides an excellent model to study the
function of cell differentiation in health and disease. We are particularly interested in studying how VSMC
become bone-like cells (vascular calcification). Using tissue-specific gene knockout mouse models, we have
demonstrated an essential role of the osteogenic transcription factor Runx2 in regulating vascular calcification,
a feature of atherosclerosis, diabetes and end stage renal disease. We have uncovered novel mechanisms
underlying Runx2 upregulation in the vasculature by increased oxidative stress and hyperglycemia. We have
also discovered a novel crosstalk between VSMC, macrophages and vascular stem cells in the development of
atherosclerotic calcification. We have published a body of work demonstrating a critical integrative role of
Runx2 upregulation in VSMC in promoting vascular pathology, which has been highly recognized and cited.
Our overarching goals are to identify novel mechanisms that regulate pathogenesis of vascular calcification
and identify therapeutic targets. We have brought together several physician scientists at the Birmingham VA
including Drs. Paul Sanders and Anupam Agarwal (Nephrology) as well as Dr. Louis Dell'Italia (Cardiology and
Associate Chief of Staff). Our collaborative studies have led to the development of a Program Project to
investigate “Novel Regulators for Vascular Disease”, which have been supported by the VA (2012-2016).
These investigations will not only elucidate the fundamental molecular mechanisms underlying the
regulation of cancer drug resistance and pathogenesis of vascular disease, but also provide novel molecular
insights facilitating further studies to translate these findings into therapeutic strategies for patient care, so as
to improve the Veterans' health, life span and quality of life.
项目摘要/摘要
我的主要研究兴趣是了解基因调节的分子机制和功能
癌症和心血管疾病的发病机理,这是我们退伍军人的两个主要健康烧伤。我们寻找
确定调节细胞功能的基本分子信号,并将其转化
使用动物模型对疾病的发病机理,以确定新的分子靶标和策略
疾病的预防和干预。
癌症发病机理和对治疗的抗性的转化研究。我们去过
专注于死亡受体信号传导途径,以减轻癌细胞凋亡及其在
癌症肿瘤发生和对治疗的抗性。我们的研究表明,调节死亡 -
诱导信号复合物(DIS)决定了下游的存活率和凋亡信号。最近,我们
在死亡受体5盘中发现了一个新型调节剂Poly(ADP-核糖)聚合酶1(PARP1),
有助于胰腺癌对治疗的抗性,这是有效癌症治疗的关键障碍。
基于这一小说的发现,我们当前的VA功绩评论奖(2014-2018)是描述机制
在调节性胰腺癌对抗体免疫疗法的抗体性中,基本的椎间盘相关PARP1与
人源化抗死亡受体5抗体(TRA-8/CS1008)。我将继续与我的长期合作
VA物理科学家,Jay M McDonald,医学博士(伯明翰伯明翰病理学)和Tra-8/CS1008的发明者,
医学博士Tong Zhou(医学,UAB)。因为CS1008治疗在某些癌症的临床试验中有效,但
在其他包括胰腺肿瘤在内的抗性,我们调查的总体目标是阐明
分子机制并鉴定出对Tra-8诱导的敏感胰腺癌的新化合物
细胞凋亡,从而抑制耐药性并导致成功的疗法。
血管疾病中血管平滑肌细胞的分化和重编程。
血管平滑肌细胞(VSMC)的表型可塑性为研究
细胞分化在健康和疾病中的功能。我们对研究如何VSMC特别感兴趣
成为骨状细胞(血管钙化)。使用组织特异性基因敲除小鼠模型,我们有
展示了成骨转录因子Runx2在控制血管钙化中的重要作用,
动脉粥样硬化,糖尿病和末期肾脏疾病的特征。我们发现了新的机制
通过增加的氧化应激和高血糖,脉管系统中的基本RUNX2上调。我们有
还发现了VSMC,巨噬细胞和血管干细胞之间的新型串扰
动脉粥样硬化钙化。我们已经发表了一系列作品,展示了
在促进血管病理学中,VSMC中的Runx2上调,该病理已被高度认可和引用。
我们的总体目标是确定调节血管钙化发病机理的新型机制
并确定治疗靶标。我们在弗吉尼亚州伯明翰汇集了几位物理科学家
包括Drs。 Paul Sanders和Anupam Agarwal(肾脏病)以及Louis Dell'italia博士(心脏病学和
参谋长)。我们的协作研究导致了计划项目的发展
研究“血管疾病的新型调节剂”,这是VA(2012-2016)支持的。
这些投资不仅将阐明该基本的基本分子机制
调节癌症耐药性和血管疾病的发病机理,但也提供了新的分子
洞察力促进进一步的研究将这些发现转化为患者护理的治疗策略,以便
改善退伍军人的健康,寿命和生活质量。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transcriptional Programming in Arteriosclerotic Disease: A Multifaceted Function of the Runx2 (Runt-Related Transcription Factor 2).
- DOI:10.1161/atvbaha.120.313791
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Chen Y;Zhao X;Wu H
- 通讯作者:Wu H
Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells.
- DOI:10.1016/j.redox.2016.08.015
- 发表时间:2016-10
- 期刊:
- 影响因子:11.4
- 作者:Byon, Chang Hyun;Heath, Jack M.;Chen, Yabing
- 通讯作者:Chen, Yabing
Epsins in vascular development, function and disease.
- DOI:10.1007/s00018-020-03642-4
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Bhattacharjee S;Lee Y;Zhu B;Wu H;Chen Y;Chen H
- 通讯作者:Chen H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yabing Chen其他文献
Yabing Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yabing Chen', 18)}}的其他基金
Protein Arginine Methylation in Vascular Smooth Muscle Cell Phenotypic Modulation and Calcification
血管平滑肌细胞表型调节和钙化中的蛋白质精氨酸甲基化
- 批准号:
10734531 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Molecular Regulation of Vascular Calcification in Diabetes
糖尿病血管钙化的分子调控
- 批准号:
10421252 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Molecular Regulation of Vascular Calcification in Diabetes
糖尿病血管钙化的分子调控
- 批准号:
9775753 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Molecular Regulation of Vascular Calcification in Diabetes
糖尿病血管钙化的分子调控
- 批准号:
10044410 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Molecular Regulation of Vascular Calcification in Diabetes
糖尿病血管钙化的分子调控
- 批准号:
10515670 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Regulation of vascular smooth muscle cell function in atherosclerosis
动脉粥样硬化中血管平滑肌细胞功能的调节
- 批准号:
9401283 - 财政年份:2017
- 资助金额:
-- - 项目类别:
O-GlcNAcylation regulates vascular smooth muscle cells in diabetic vasculopathy
O-GlcNAc 酰化调节糖尿病血管病变中的血管平滑肌细胞
- 批准号:
9211306 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似国自然基金
人腺病毒4型双抗体鸡尾酒疗法的开发及其结构功能基础研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
人腺病毒4型双抗体鸡尾酒疗法的开发及其结构功能基础研究
- 批准号:32170948
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
肿瘤细胞靶向性光动力疗法联合SIRPα抗体导向的TRAIL对抗“冷”肿瘤的作用及机制
- 批准号:82073362
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
新型血管调控因子ANGPTL4对肺纤维化进程的调控作用及分子机制研究
- 批准号:81900071
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
开发基于cetuximab抗体靶向工程酶A4H363A的ADEPT肿瘤靶向疗法
- 批准号:21977055
- 批准年份:2019
- 资助金额:66 万元
- 项目类别:面上项目
相似海外基金
Characterizing antibody responses to HIV-1 vaccination in next-generation immune humanized mice
表征下一代免疫人源化小鼠对 HIV-1 疫苗接种的抗体反应
- 批准号:
10673292 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Broadly neutralizing antibody combinations with single virions in HIV+ plasma
HIV血浆中单一病毒粒子的广泛中和抗体组合
- 批准号:
10699469 - 财政年份:2023
- 资助金额:
-- - 项目类别: