Protein Arginine Methylation in Vascular Smooth Muscle Cell Phenotypic Modulation and Calcification
血管平滑肌细胞表型调节和钙化中的蛋白质精氨酸甲基化
基本信息
- 批准号:10734531
- 负责人:
- 金额:$ 71.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AgingAortaApolipoprotein EArginineArterial Fatty StreakAtherosclerosisBlood VesselsCalciumCardiovascular systemCellsChIP-seqChronic Kidney FailureClinical ResearchComplexDNA BindingDepositionDevelopmentDiabetes MellitusDietDiseaseDown-RegulationElasticityGenesGenetic TranscriptionHealthHomeostasisHumanIn VitroKidney DiseasesLinkLipidsMalignant NeoplasmsMediatingMethylationMolecularMorbidity - disease rateMusOxidative Stress InductionPathogenesisPathologicPathologic ProcessesPhenotypePlayProtein-Arginine N-MethyltransferaseProteinsProteomicsRegulationRoleSerum Response FactorSignal TransductionSmooth Muscle MyocytesTestingTransgenic MiceTransgenic OrganismsUp-RegulationVascular DiseasesVascular Smooth MuscleVascular Smooth Muscle TissueVascular calcificationacute myeloid leukemia 1 proteinarterial stiffnessbonecalcificationdesignexperimental studygain of functionhuman tissueimprovedin vivoloss of functionmortalitymouse modelmultiple omicsmyocardinnovelosteogenicprotein arginine methyltransferase 2single-cell RNA sequencingtherapy developmenttranscription factortranscriptomics
项目摘要
Abstract
Vascular calcification in blood vessels, stiffens artery and predicts adverse cardiovascular mortality and
morbidity. No therapies developed so far directly targeting vascular calcification. Strong evidence has now
determined the osteogenic differentiation of vascular smooth muscle cells (VSMC) into “bone-like” cells is critical
for the development of vascular calcification. We and others have demonstrated SMC-derived Runx2 (Runt-
related transcriptional factor 2) is essential in regulating osteogenic differentiation of VSMC, which induces
vascular calcification in atherosclerosis, diabetes and kidney disease. Using single cell RNA sequencing
(scRNA-seq) analysis, we discovered a novel Runx2 suppressor and its impact on SMC phenotypic switch in
atherosclerosis. Specifically, we determined that the protein arginine methyltransferase 1 (PRMT1) plays a
critical role in inhibiting Runx2 and modulating SMC phenotypic switch. PRMT1 is an emerging regulator in
human pathological processes, however, its function in vascular calcification and atherosclerosis is entirely
unknown. It is thus incumbent upon us to provide additional evidence as to how PRMT1 acts as a new Runx2
suppressor in the modulation of vascular phenotypic switch and calcification. Prompted by the intriguing
observations of an inverse correlation between upregulation of Runx2 and marked downregulation of PRMT1 in
the calcified atherosclerotic lesions in human and mice, we carried out functional studies using the PRMT1 gain-
and loss-of-function VSMC and our novel SMC-specific PRMT1 transgenic mice. Our preliminary studies
demonstrated a causative role of PRMT1 in regulating Runx2, SMC phenotypic switch and calcification in vitro;
and SMC-specific transgenic PRMT1 inhibited aortic Runx2 and the development of atherosclerosis in vivo in
the ApoE-/- mice. Further evidence implicates that PRMT1-directed regulation of Runx2 is mediated through
methylation of Runx2. Unbiased proteomics analysis of Runx2 interactome uncovered the interaction of Runx2
with serum response factor (SRF), an essential transcriptional regulator for contractile SMC marker genes, which
dysregulates SRF-dependent expression of SMC marker genes. Based on these new and exciting findings, we
hypothesize that PRMT1 is a key Runx2 suppressor, which regulates VSMC Runx2 and governs VSMC
phenotypic switch and calcification in atherosclerosis. Utilizing the new SMC-specific PRMT1 transgenic
mouse model and comprehensive multi-Omics approaches, the proposal will uncover a novel regulatory
paradigm highlighting the PRMT1/Runx2 signaling axis in modulating VSMC phenotypic switch and calcification.
摘要
血管中的血管钙化,动脉硬化,并预测不良心血管死亡率,
发病率目前还没有开发出直接针对血管钙化的治疗方法。现在有强有力的证据表明
确定了血管平滑肌细胞(VSMC)向“骨样”细胞的成骨分化是至关重要的
导致血管钙化我们和其他人已经证明了SMC衍生的Runx 2(Runt-
相关转录因子2)在调节VSMC的成骨分化中是必不可少的,其诱导
动脉粥样硬化、糖尿病和肾脏疾病中的血管钙化。使用单细胞RNA测序
(scRNA-seq)分析,我们发现了一种新的Runx 2抑制因子及其对SMC表型转换的影响,
动脉粥样硬化具体地说,我们确定蛋白质精氨酸甲基转移酶1(PRMT 1)发挥作用,
在抑制Runx 2和调节SMC表型转换中起关键作用。PRMT 1是一个新兴的监管机构,
然而,在人类的病理过程中,它在血管钙化和动脉粥样硬化中的作用完全是
未知因此,我们有责任提供更多的证据,以证明PRMT 1如何作为一个新的Runx 2
抑制因子在调节血管表型转换和钙化中的作用。被有趣的
观察到Runx 2的上调和PRMT 1的显著下调之间的负相关性,
钙化的动脉粥样硬化病变在人类和小鼠,我们进行了功能研究,使用PRMT 1增益-
和功能丧失的VSMC以及我们的新型SMC特异性PRMT 1转基因小鼠。我们的初步研究
在体外研究中证实PRMT 1在调节Runx 2、SMC表型转换和钙化中起致病作用;
SMC特异性转基因PRMT 1抑制主动脉Runx 2和动脉粥样硬化的发展。
ApoE-/-小鼠。进一步的证据表明,PRMT 1介导的Runx 2调节是通过
Runx 2的甲基化。Runx 2相互作用组的无偏蛋白质组学分析揭示了Runx 2的相互作用
与血清反应因子(SRF),一个重要的转录调节收缩SMC标记基因,
SRF依赖性SMC标记基因表达失调。基于这些令人兴奋的新发现,我们
假设PRMT 1是一个关键的Runx 2抑制因子,它调节VSMC Runx 2并支配VSMC
表型转换和钙化。利用新的SMC特异性PRMT 1转基因
小鼠模型和全面的多组学方法,该提案将揭示一种新的监管机制,
范式强调PRMT 1/Runx 2信号轴在调节VSMC表型转换和钙化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yabing Chen其他文献
Yabing Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yabing Chen', 18)}}的其他基金
Molecular Regulation of Vascular Calcification in Diabetes
糖尿病血管钙化的分子调控
- 批准号:
10421252 - 财政年份:2019
- 资助金额:
$ 71.4万 - 项目类别:
Molecular Regulation of Vascular Calcification in Diabetes
糖尿病血管钙化的分子调控
- 批准号:
9775753 - 财政年份:2019
- 资助金额:
$ 71.4万 - 项目类别:
Molecular Regulation of Vascular Calcification in Diabetes
糖尿病血管钙化的分子调控
- 批准号:
10044410 - 财政年份:2019
- 资助金额:
$ 71.4万 - 项目类别:
Molecular Regulation of Vascular Calcification in Diabetes
糖尿病血管钙化的分子调控
- 批准号:
10515670 - 财政年份:2019
- 资助金额:
$ 71.4万 - 项目类别:
Regulation of vascular smooth muscle cell function in atherosclerosis
动脉粥样硬化中血管平滑肌细胞功能的调节
- 批准号:
9401283 - 财政年份:2017
- 资助金额:
$ 71.4万 - 项目类别:
O-GlcNAcylation regulates vascular smooth muscle cells in diabetic vasculopathy
O-GlcNAc 酰化调节糖尿病血管病变中的血管平滑肌细胞
- 批准号:
9211306 - 财政年份:2014
- 资助金额:
$ 71.4万 - 项目类别:
相似海外基金
Deep learning to enable the genetic analysis of aorta
深度学习可实现主动脉的遗传分析
- 批准号:
10807379 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别:
Clinical benefits and mechanism of action of angiotensin-II receptor blocker on Cardiovascular remodeling in patients with repaired coarctation of aorta
血管紧张素II受体阻滞剂对主动脉缩窄修复患者心血管重塑的临床疗效及作用机制
- 批准号:
10734120 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别:
Development of new preventive method for postoperative paraplegia of thoracoabdominal aorta using exosomes
利用外泌体开发胸腹主动脉术后截瘫的新预防方法
- 批准号:
22K08940 - 财政年份:2022
- 资助金额:
$ 71.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Hemodynamic Mechanisms of Heart-Aorta-Brain Coupling with An Integrated Preventive Medicine Education Program for Socioeconomically Disadvantaged Groups
职业:心-主动脉-脑耦合的血流动力学机制以及针对社会经济弱势群体的综合预防医学教育计划
- 批准号:
2145890 - 财政年份:2022
- 资助金额:
$ 71.4万 - 项目类别:
Continuing Grant
Dissecting the role of hemodynamics in ascending aorta aneurysm development in bicuspid aortic valve disease
剖析血流动力学在二叶式主动脉瓣疾病升主动脉瘤发展中的作用
- 批准号:
500274 - 财政年份:2022
- 资助金额:
$ 71.4万 - 项目类别:
Studentship Programs
Smooth muscle cell diversity and thoracic aorta vulnerability
平滑肌细胞多样性和胸主动脉脆弱性
- 批准号:
453372 - 财政年份:2021
- 资助金额:
$ 71.4万 - 项目类别:
Operating Grants
Deep learning to enable the genetic analysis of aorta
深度学习可实现主动脉的遗传分析
- 批准号:
10613402 - 财政年份:2021
- 资助金额:
$ 71.4万 - 项目类别:
Development of bifurcated curved bio-tube for the aorta with in-body tissue architecture
开发具有体内组织结构的主动脉分叉弯曲生物管
- 批准号:
21H03819 - 财政年份:2021
- 资助金额:
$ 71.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)