DNA barcoding via multi-scan and step control in dual-pore tug-of-war

通过双孔拔河中的多重扫描和步骤控制进行 DNA 条形码

基本信息

  • 批准号:
    10027758
  • 负责人:
  • 金额:
    $ 47.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Background and Significance: Precise mapping of the binding position of molecular motifs along long, individual dsDNA strands in highly heterogeneous samples is core to a wide range of genomics applications “beyond” sequencing. One candidate approach for molecular feature mapping is based on measuring modulations in the ionic current arising when a dsDNA is electrically driven through a solid-state nanopore (ss-nanopore). Nanopores are attractive as they have a purely electrical read- out, leading to a small foot-print and substantial cost reductions. Recent work demonstrates that ss- nanopores have sufficient sensitivity to detect a wide-range of molecular motifs on translocating dsDNA. Yet, fundamental challenges continue to hinder genome scaling of solid-state nanopore technology: (1) the need to ensure consistent linearization of translocating molecules, (2) need to reduce effect of molecular fluctuations that introduce random error and (3) need to develop strategies to perform accurate genomic distance calibration. Exploiting our recent work on DNA control using devices with two closely separated ss-nanopores, we will address challenges (1)-(3) and obtain feature barcodes from dsDNA possessing sufficient quality to permit genome-scale alignment of individual molecule reads. This is a critical step to enable application of ss-nanopore sensing to heterogenous genomic DNA samples where every molecule sensed in the device can have a different underlying sequence. Technical Approach: A DNA molecule will be threaded simultaneously through two closely separated pores and caught in a molecular “tug-of-war.” Tug-of- war leads to rapid DNA linearization (addressing challenge 1); in addition, independent distance calibration can be performed by measuring the time-of-flight (TOF) of a molecular feature between the pores (addressing challenge 3). Using active logic based on a Field-Programmable Gate Array (FPGA), we can change the molecule’s translocation direction in response to detecting passage of molecular features. This enables back-and-forth rescanning of a local DNA region that can be used to increase precision through averaging (addressing challenge 2). Specific Aims: we will first benchmark accuracy of genomic distance prediction using designed constructs with two features of known spacing (AIM1); we will then extend our two-feature mapping strategy to multi-feature profiles via multi-scan and step control (AIM2); and finally apply multi-feature profiling to heterogeneous samples containing DNA fragments from Mbp-scale genomes (AIM3). The final deliverable is a ss- nanopore based platform that can align feature barcodes to Mbp scale genomes. Further funding phases will drive scaling to Gbp-size genomes and develop multiplexed mapping strategies that combine a barcoding motif with additional molecular motifs (e.g. regulatory proteins to provide a functional annotation/overlay relative to the sequence scaffold established by the barcoding motif).
背景与意义:精确定位分子基序的结合位置

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Bruce Dunbar其他文献

William Bruce Dunbar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Bruce Dunbar', 18)}}的其他基金

A Dual-Nanopore Instrument for Single DNA Measurements and Control
用于单 DNA 测量和控制的双纳米孔仪器
  • 批准号:
    8229881
  • 财政年份:
    2012
  • 资助金额:
    $ 47.66万
  • 项目类别:
A Dual-Nanopore Instrument for Single DNA Measurements and Control
用于单 DNA 测量和控制的双纳米孔仪器
  • 批准号:
    8458100
  • 财政年份:
    2012
  • 资助金额:
    $ 47.66万
  • 项目类别:
A Nanopore-based Instrument for Single Molecule Analysis of DNA-binding Proteins
基于纳米孔的 DNA 结合蛋白单分子分析仪器
  • 批准号:
    7940890
  • 财政年份:
    2009
  • 资助金额:
    $ 47.66万
  • 项目类别:
Feedback Control of Biological Polymers in a Nanopore
纳米孔中生物聚合物的反馈控制
  • 批准号:
    7130891
  • 财政年份:
    2006
  • 资助金额:
    $ 47.66万
  • 项目类别:
Feedback Control of Biological Polymers in a Nanopore
纳米孔中生物聚合物的反馈控制
  • 批准号:
    7492192
  • 财政年份:
    2006
  • 资助金额:
    $ 47.66万
  • 项目类别:
Feedback Control of Biological Polymers in a Nanopore
纳米孔中生物聚合物的反馈控制
  • 批准号:
    7281328
  • 财政年份:
    2006
  • 资助金额:
    $ 47.66万
  • 项目类别:
Feedback Control of Biological Polymers in a Nanopore
纳米孔中生物聚合物的反馈控制
  • 批准号:
    7687632
  • 财政年份:
    2006
  • 资助金额:
    $ 47.66万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 47.66万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 47.66万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 47.66万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 47.66万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 47.66万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 47.66万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 47.66万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 47.66万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 47.66万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.66万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了