A Nanopore-based Instrument for Single Molecule Analysis of DNA-binding Proteins

基于纳米孔的 DNA 结合蛋白单分子分析仪器

基本信息

项目摘要

DESCRIPTION (provided by applicant): Nanopores have shown great promise for DNA sequencing, and more recently as instruments for probing interactions between DNA and DNA-binding enzymes. The broad aim of the proposed research is to develop a nanopore-based instrument for single molecule analysis of polynucleotide-binding proteins, using the Klenow fragment (KF) of Escherichia coli DNA polymerase I as the model enzyme. There are two specific aims: Aim 1: Reduce the diameter of the lipid bilayer that houses the nanopore channel in steps, approaching a bilayer-free channel in a silicon nitride support. Significance: Bilayer diameter reduction will increase the stability and lifetime of the nanopore, from hours to days. Smaller bilayers will also shorten the duration of capacitive transients that are superimposed on the ionic current measurements following a change in applied voltage from milliseconds to microseconds. Reducing the transient settling time will in turn enable sub-millisecond detection of variations in the measured current, caused by changes in the captured macromolecular complex, that arise during or near a voltage change. Aim 2: Design and implement filtering and control logic to increase the control authority over the lifetime of the DNA-KF complex, regulating the availability of DNA for binding above the nanopore and the unbinding of KF from DNA by voltage-promoted dissociation. Implement the mathematical modeling framework of the Fokker-Planck equation with Bayesian statistical inference to construct the potential profile of dissociation for enzyme-DNA complexes. Significance: The proposed control approach will dramatically increase the throughput of DNA-KF dissociation time measurements under varying voltage patterns. The modeling framework uses the resulting distribution of dissociation time measurements to construct the shape of the free energy landscape as a function of the reaction coordinate, while permitting arbitrary voltage changing patterns. The framework is more general than Kramers' approximation. Kramers' approximation has been used to estimate the height, width and rate of escape of the potential profile, and assumes constant or slowly changing voltage patterns. Our framework does not assume constant or slowly changing voltage patterns, and uses statistical inference to assign uncertainty to profile model parameters. Advances in bilayer diameter reduction (Aim 1) will increase the range of voltage changing frequencies that can be used to dissociate the enzyme, while reliably detecting dissociation. Public Health Relevance Statement: Novel approaches for single molecule measurement, manipulation and modeling are required to uncover with high resolution the dynamics and function of biological macromolecules. The proposed instrument and modeling tools will provide details, previously not achieved, of the shape of the free energy curve as a function of the reaction coordinate describing the dissociation mechanics of the Klenow fragment of Escherichia coli DNA polymerase I from DNA. Using appropriately designed nucleic acid targets, this instrument has broad potential for reliable detection of DNA and RNA binding proteins, in both laboratory and clinical settings.
描述(由申请人提供):纳米孔在DNA测序方面显示出巨大的前景,最近还显示出作为探测DNA和DNA结合酶之间相互作用的仪器的前景。拟议的研究的广泛目标是开发一种基于纳米孔的仪器,用于多核苷酸结合蛋白的单分子分析,使用大肠杆菌DNA聚合酶I的Klenow片段(KF)作为模型酶。有两个具体目标: 目标1:逐步减小容纳纳米孔通道的脂质双层的直径,接近氮化硅载体中的无双层通道。意义:双层直径减小将增加纳米孔的稳定性和寿命,从数小时到数天。较小的双层还将缩短电容瞬变的持续时间,所述电容瞬变在施加的电压从毫秒变化到微秒之后叠加在离子电流测量上。减少瞬态稳定时间又将使得能够亚毫秒检测由捕获的大分子复合物的变化引起的测量电流的变化,所述变化在电压变化期间或附近出现。 目标二:设计和实施过滤和控制逻辑,以增加DNA-KF复合物寿命期间的控制权限,调节DNA在纳米孔上方结合的可用性以及KF通过电压促进的解离从DNA中解结合。利用贝叶斯统计推断实现Fokker-Planck方程的数学建模框架,以构建酶-DNA复合物的潜在解离谱。重要性:所提出的控制方法将显着增加在不同电压模式下DNA-KF解离时间测量的吞吐量。建模框架使用解离时间测量结果的分布来构建作为反应坐标的函数的自由能景观的形状,同时允许任意的电压变化模式。该框架比Kramers近似更一般。Kramers的近似已被用来估计的高度,宽度和逃逸率的电位分布,并假定恒定或缓慢变化的电压模式。我们的框架不假设恒定或缓慢变化的电压模式,并使用统计推断来分配不确定性的配置文件模型参数。双层直径减小的进展(目标1)将增加可用于解离酶的电压变化频率的范围,同时可靠地检测解离。 公共卫生相关性声明:单分子测量、操纵和建模的新方法需要以高分辨率揭示生物大分子的动力学和功能。建议的仪器和建模工具将提供细节,以前没有实现,作为反应坐标的函数的自由能曲线的形状描述的大肠杆菌DNA聚合酶I的Klenow片段从DNA的解离力学。使用适当设计的核酸靶标,该仪器在实验室和临床环境中具有可靠检测DNA和RNA结合蛋白的广泛潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Bruce Dunbar其他文献

William Bruce Dunbar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Bruce Dunbar', 18)}}的其他基金

DNA barcoding via multi-scan and step control in dual-pore tug-of-war
通过双孔拔河中的多重扫描和步骤控制进行 DNA 条形码
  • 批准号:
    10027758
  • 财政年份:
    2020
  • 资助金额:
    $ 20.45万
  • 项目类别:
A Dual-Nanopore Instrument for Single DNA Measurements and Control
用于单 DNA 测量和控制的双纳米孔仪器
  • 批准号:
    8229881
  • 财政年份:
    2012
  • 资助金额:
    $ 20.45万
  • 项目类别:
A Dual-Nanopore Instrument for Single DNA Measurements and Control
用于单 DNA 测量和控制的双纳米孔仪器
  • 批准号:
    8458100
  • 财政年份:
    2012
  • 资助金额:
    $ 20.45万
  • 项目类别:
Feedback Control of Biological Polymers in a Nanopore
纳米孔中生物聚合物的反馈控制
  • 批准号:
    7492192
  • 财政年份:
    2006
  • 资助金额:
    $ 20.45万
  • 项目类别:
Feedback Control of Biological Polymers in a Nanopore
纳米孔中生物聚合物的反馈控制
  • 批准号:
    7130891
  • 财政年份:
    2006
  • 资助金额:
    $ 20.45万
  • 项目类别:
Feedback Control of Biological Polymers in a Nanopore
纳米孔中生物聚合物的反馈控制
  • 批准号:
    7281328
  • 财政年份:
    2006
  • 资助金额:
    $ 20.45万
  • 项目类别:
Feedback Control of Biological Polymers in a Nanopore
纳米孔中生物聚合物的反馈控制
  • 批准号:
    7687632
  • 财政年份:
    2006
  • 资助金额:
    $ 20.45万
  • 项目类别:

相似海外基金

How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
  • 批准号:
    DP240103141
  • 财政年份:
    2024
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Discovery Projects
Structural classification of NHEJ pathways; unravelling the role of Ku-binding proteins
NHEJ通路的结构分类;
  • 批准号:
    MR/X00029X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Research Grant
BRC-BIO: Evolutionary Patterns of Ice-Binding Proteins in North Pacific Intertidal Invertebrates
BRC-BIO:北太平洋潮间带无脊椎动物冰结合蛋白的进化模式
  • 批准号:
    2312378
  • 财政年份:
    2023
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Standard Grant
Exploring the roles and functions of sex steroid hormone receptor-associated RNA binding proteins in the development of geriatric diseases.
探索性类固醇激素受体相关 RNA 结合蛋白在老年疾病发展中的作用和功能。
  • 批准号:
    23K06408
  • 财政年份:
    2023
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
UV Plasmon-Enhanced Chiroptical Spectroscopy of Membrane-Binding Proteins
膜结合蛋白的紫外等离子增强手性光谱
  • 批准号:
    10680969
  • 财政年份:
    2023
  • 资助金额:
    $ 20.45万
  • 项目类别:
Investigating physiologic and pathophysiologic connections between the Parkinson's disease protein alpha-synuclein and RNA binding proteins
研究帕金森病蛋白 α-突触核蛋白和 RNA 结合蛋白之间的生理和病理生理联系
  • 批准号:
    10744556
  • 财政年份:
    2023
  • 资助金额:
    $ 20.45万
  • 项目类别:
Structural and computational analysis of immune-related RNA-binding proteins
免疫相关 RNA 结合蛋白的结构和计算分析
  • 批准号:
    23K06597
  • 财政年份:
    2023
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of carbohydrate-binding proteins and their applications
碳水化合物结合蛋白的表征及其应用
  • 批准号:
    23K05034
  • 财政年份:
    2023
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A machine learning approach to identify carbon dioxide-binding proteins for sustainability and health
一种机器学习方法来识别二氧化碳结合蛋白以实现可持续发展和健康
  • 批准号:
    2838427
  • 财政年份:
    2023
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Studentship
RNA-binding proteins in bacterial virulence and host-pathogen interactions
RNA结合蛋白在细菌毒力和宿主-病原体相互作用中的作用
  • 批准号:
    10659346
  • 财政年份:
    2023
  • 资助金额:
    $ 20.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了