Mechanisms of Primary Cilium Assembly and Disassembly
初级纤毛组装和拆卸的机制
基本信息
- 批准号:10027412
- 负责人:
- 金额:$ 40.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:BiochemicalBiogenesisBiological AssayCRISPR screenCell CycleCell Cycle ProgressionCell Cycle ProteinsCellsChildhoodCiliaClustered Regularly Interspaced Short Palindromic RepeatsDefectDevelopmentDiseaseEmbryonic DevelopmentErinaceidaeGenesGenetic ScreeningHealthHomeostasisHuman bodyImageIn VitroKnowledgeLinkMalignant NeoplasmsMediator of activation proteinMolecularMonitorOrganellesPathway interactionsPerceptionPhysiologicalProteinsRoleScreening procedureSensorySignal PathwaySignal TransductionStructureStructure of ciliary processesSurfaceSyndromeSystemTissuesWorkbasecell growthciliopathycilium biogenesisexperimental studygene productgenome wide screenimprovedinsightnovel strategiesprotein transportrab GTP-Binding Proteinsreconstitutionscreeningsmoothened signaling pathwaytumortumorigenesisuncontrolled cell growth
项目摘要
PROJECT SUMMARY
The primary cilium is a micron-scale structure that protrudes from the surface of most cells in the human
body. Once thought to be vestigial, the cilium has recently been shown to have key roles in embryonic
development, sensory perception, and tissue homeostasis. Two key functions of cilia give rise to these
physiologic roles: cilia are both organizing centers for diverse signaling pathways and structures whose assembly
and disassembly is tightly linked to progression through the cell cycle. Consistent with these roles, ciliary defects
cause pediatric disorders known as ciliopathies and can promote tumorigenesis. These recent discoveries have
highlighted the importance of cilia but also underscored many gaps in our knowledge. Key questions include:
how are cilia assembled, maintained, and disassembled, how do proteins traffic to and from cilia, how do cilia
promote signaling, and how is cilium disassembly linked to cell cycle progression? At present, many gene
products that support cilium function have yet to be identified or characterized in detail, and thus the answers to
these questions remain elusive.
My lab aims to understand the molecular basis of mammalian primary cilium function by combining cell-
based assays with new approaches we have developed including CRISPR-based functional screening and in
vitro reconstitution in semi-permeabilized cells. In particular, we recently conducted a genome-wide screen to
identify genes required for cilium-dependent signaling through the Hedgehog (Hh) pathway. This screen
identified hit genes with high precision and sensitivity, revealed new genes required for cilium assembly and Hh
signaling, and suggested new connections between cilia and disease. We now propose to build on this screen
by 1) functionally characterizing newly identified hit genes, including a Rab GTPase that we find to be required
for ciliogenesis and to localize to cilia, and 2) adapting our CRISPR screening tools to systematically investigate
an aspect of cilium function that remains poorly understood: the regulated disassembly of primary cilia. Our work
on cilium disassembly will focus on the hypothesis that cilium disassembly is monitored in a checkpoint-like
manner and may be dysregulated in cases of uncontrolled cell growth, such as during tumorigenesis. In addition
to conducting a genetic screen to identify mediators and regulators of cilium disassembly, we will dissect the
mechanism of disassembly through complementary live-imaging assays and in vitro reconstitution. These latter
experiments will take advantage of a semi-permeabilized cell system I developed that allows powerful
biochemical analysis of ciliary processes, including cilium disassembly.
Taken together, this project aims to provide fundamental insights into primary cilia that will broaden our
understanding of the cell cycle, protein trafficking, signal transduction, and organelle biogenesis. Additionally,
these studies will help to reveal how ciliary defects contribute to ciliopathies and tumorigenesis.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David King Breslow其他文献
David King Breslow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David King Breslow', 18)}}的其他基金
Mechanisms of Primary Cilium Assembly and Disassembly
初级纤毛组装和拆卸的机制
- 批准号:
10246491 - 财政年份:2020
- 资助金额:
$ 40.53万 - 项目类别:
Mechanisms of Primary Cilium Assembly and Disassembly
初级纤毛组装和拆卸的机制
- 批准号:
10430232 - 财政年份:2020
- 资助金额:
$ 40.53万 - 项目类别:
Mechanisms of Primary Cilium Assembly and Disassembly
初级纤毛组装和拆卸的机制
- 批准号:
10654783 - 财政年份:2020
- 资助金额:
$ 40.53万 - 项目类别:
Ciliary control of Gli protein activity in Hedgehog pathway signaling
Hedgehog 通路信号传导中 Gli 蛋白活性的纤毛控制
- 批准号:
8968842 - 财政年份:2014
- 资助金额:
$ 40.53万 - 项目类别:
相似国自然基金
UMSC-Exo通过调控Ribosome biogenesis诱导心肌再生的策略及机制研究
- 批准号:82370264
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
活体动物线粒体biogenesis、fission及fusion对肝脏再生中能量供应影响机制的研究
- 批准号:81470878
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
相似海外基金
Biogenesis of the mitochondrial beta-barrel membrane protein at the intermembrane space.
膜间空间线粒体β-桶膜蛋白的生物发生。
- 批准号:
24K18071 - 财政年份:2024
- 资助金额:
$ 40.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
白血病幹細胞におけるRibosomal biogenesisの解明と治療戦略の構築
白血病干细胞核糖体生物发生的阐明和治疗策略的开发
- 批准号:
24H00639 - 财政年份:2024
- 资助金额:
$ 40.53万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New mechanisms regulating the biogenesis of extracellular vesicles
调节细胞外囊泡生物发生的新机制
- 批准号:
DP240101427 - 财政年份:2024
- 资助金额:
$ 40.53万 - 项目类别:
Discovery Projects
DEL-1 Promotes Biogenesis of Mineralizing Extracellular Vesicles by Mediating Intracellular Calcium Signaling
DEL-1 通过介导细胞内钙信号传导促进矿化细胞外囊泡的生物合成
- 批准号:
24K19876 - 财政年份:2024
- 资助金额:
$ 40.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MFB: Characterization of the Biogenesis, Uptake, and Cellular Response to the Ribonucleoprotein Cargoes of Extracellular Vesicles using EV-CLASP
MFB:使用 EV-CLASP 表征细胞外囊泡核糖核蛋白货物的生物合成、摄取和细胞反应
- 批准号:
2330665 - 财政年份:2024
- 资助金额:
$ 40.53万 - 项目类别:
Standard Grant
Mechanisms of PIKII-dependent transport during secretory granule biogenesis
分泌颗粒生物发生过程中 PIKII 依赖性运输的机制
- 批准号:
490594 - 财政年份:2023
- 资助金额:
$ 40.53万 - 项目类别:
Operating Grants
MITOCHONDRIA REDOX BIOGENESIS AND METABOLIC RAMAN IMAGING IN INSULIN SIGNALLING
胰岛素信号传导中的线粒体氧化还原生物发生和代谢拉曼成像
- 批准号:
2883511 - 财政年份:2023
- 资助金额:
$ 40.53万 - 项目类别:
Studentship
Changes in structure and biogenesis of Gram-negative envelope following a polymyxin challenge
多粘菌素攻击后革兰氏阴性包膜的结构和生物发生的变化
- 批准号:
BB/X000370/1 - 财政年份:2023
- 资助金额:
$ 40.53万 - 项目类别:
Research Grant
Molecular Mechanisms of Mitochondrial Biogenesis
线粒体生物发生的分子机制
- 批准号:
10735778 - 财政年份:2023
- 资助金额:
$ 40.53万 - 项目类别:














{{item.name}}会员




