Sensory Cue Integration in Melanoma Screening

黑色素瘤筛查中的感觉线索整合

基本信息

  • 批准号:
    10025420
  • 负责人:
  • 金额:
    $ 41.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-05 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Imaging biomarkers are features in images that have biological implications. For example, in a picture of a person with red hair, the red hair is a feature and the implication is that there is a mutation in the MC1R gene that provides instructions for making a protein called the melanocortin 1 receptor. This feature, an imaging biomarker, can be used as a medical cue to indicate increased risk for melanoma. When used in this context, this imaging biomarker becomes an imaging biomarker cue (IBC), in the sense that it may cue the medical professional observer to alter treatment accordingly, such as recommending sunscreen use. IBCs do not individually bear the full weight of medical decision-making and instead are integrated. IBC analysis may be a process of sensory cue integration or may be a process of observation and integration by technology such as a digital camera and computer. An advantage of the latter is that computational scalability enables machine vision to compute vast permutations of IBCs that would be overwhelming to a human observer. Thus computers can try many potential diagnostic methods rapidly before picking the best one to teach back to humans. The purpose of this project is to develop a human/machine interface for bi-directional teaching so expert dermatologists can teach computers what IBCs they use to achieve accurate diagnosis and computers can teach dermatologists the best way to use current IBCs and suggest integration of new IBCs that machine learning guides them to. As an outcome, we will measure the diagnostic performance of dermatologists who undergo IBC training in detecting melanoma. It is known that early detection saves lives, but the potential of technology to improve early detection, a great need since 10,000 Americans still die each year from melanoma, is unknown. This project will help answer that unknown and if we are successful in translating IBCs with commuter vision and machine learning, more melanomas will be detected early and lives will be saved. Our long-term goal is to reduce melanoma related deaths and unnecessary biopsies by helping clinicians increase the predictive value of dermoscopy-based melanoma screening. We believe sensitivity and specificity of dermoscopy- based melanoma screening for non-expert screeners can be improved by assistive technology, which is highly desirable given the cost of false positives (patient stress and unnecessary biopsies) and the extremely high cost of false negatives (delayed melanoma treatment).
成像生物标志物是图像中具有生物学意义的特征。例如,在一个人的照片中

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep learning-level melanoma detection by interpretable machine learning and imaging biomarker cues.
  • DOI:
    10.1117/1.jbo.25.11.112906
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Gareau DS;Browning J;Correa Da Rosa J;Suarez-Farinas M;Lish S;Zong AM;Firester B;Vrattos C;Renert-Yuval Y;Gamboa M;Vallone MG;Barragán-Estudillo ZF;Tamez-Peña AL;Montoya J;Jesús-Silva MA;Carrera C;Malvehy J;Puig S;Marghoob A;Carucci JA;Krueger JG
  • 通讯作者:
    Krueger JG
The erythema Q-score, an imaging biomarker for redness in skin inflammation.
红斑Q评分,一种用于皮肤发炎的发红的成像生物标志物。
  • DOI:
    10.1111/exd.14224
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Frew J;Penzi L;Suarez-Farinas M;Garcet S;Brunner PM;Czarnowicki T;Kim J;Bottomley C;Finney R;Cueto I;Fuentes-Duculan J;Ohmatsu H;Lentini T;Yanofsky V;Krueger JG;Guttman-Yassky E;Gareau D
  • 通讯作者:
    Gareau D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Summer Gareau其他文献

Daniel Summer Gareau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Summer Gareau', 18)}}的其他基金

Advanced Surgical Pathology Device
先进的外科病理设备
  • 批准号:
    10215333
  • 财政年份:
    2021
  • 资助金额:
    $ 41.26万
  • 项目类别:
Advanced Surgical Pathology Device
先进的外科病理设备
  • 批准号:
    10698697
  • 财政年份:
    2019
  • 资助金额:
    $ 41.26万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了