Advanced Surgical Pathology Device
先进的外科病理设备
基本信息
- 批准号:10698697
- 负责人:
- 金额:$ 102万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalArtificial IntelligenceBasal cell carcinomaBenchmarkingBiopsyCancerousClinicalCollaborationsComputer softwareConsumptionDevicesDiagnosisDiagnosticEngineeringEnsureEquipmentEvaluationExcisionFailureFluorescenceFreezingFresh TissueFrozen SectionsFundingGlassGoalsHeadHealth systemHematomaHemorrhageHistopathologyHourImageImaging TechniquesInfectionInfectious Skin DiseasesLaboratoriesLateralLegal patentLightMalignant Epithelial CellMalignant NeoplasmsMapsMarketingMedical ElectronicsMethodsMicroscopeMicroscopicModernizationMohs SurgeryMorphologic artifactsNoiseNuclearOperative Surgical ProceduresOpticsPainPathologicPathologistPathologyPathway interactionsPatientsPerformancePerioperative complicationPersonsPhasePostoperative ComplicationsProceduresProcessReadingReagentReproducibilityResectedResolutionRiskSamplingScanningScreening ResultSensitivity and SpecificitySignal TransductionSkin CancerSkin CarcinomaSliceSlideSpecific qualifier valueSpecimenSpecimen HandlingSpeedSquamous cell carcinomaStagingStainsSurfaceSurgeonSurgical PathologySurgical complicationSystemTechnologyThickTimeTissue PreservationTissue SampleTissuesTrainingTumor stageUnited States National Institutes of HealthValidationVisualWorkanalogcancer diagnosiscancer invasivenesscancer subtypescancer surgerycare burdencare costscommercial prototypecontrast imagingcostcost effectivedesigndigitaldigital imagingdigital pathologydisease diagnosishealingimaging systemimprovedinfection ratemeterminiaturizeminiaturized devicenecrotic tissuenovelpathology imagingphase 2 studypoint of careprototypescreeningstandard of caresuccesstissue processingtreatment choicetumorvalidation studiesverification and validationwoundwound healing
项目摘要
Abstract
Diagnosing diseases relies heavily on pathologically analyzing tissue samples from patients. For cancers alone,
over 30 million people undergo tissue biopsies annually in the US. While surgery currently represents the best
standard of care treatment to cure invasive cancers, its success depends on timely excision of the tumor before
it can spread. This is especially true for the removal of skin cancers, more common in the populace than all other
malignancies combined, with Mohs surgery deemed the best treatment of choice for its high skin cancer cure
rates. However, this procedure requires the repeated histopathological evaluation of patient tissue samples to
confirmation of cancerous or non-cancerous tissue. This time-consuming step requires freezing, slicing, and
preserving the tissue between microscope slides to take an image, adding 2-3 hours to surgical times. It
increases operative times and the risk of postoperative complications including skin infections, bleeding or
hematoma, wound dehiscence (disruption of recently repaired wounds), tissue necrosis, and pain. The process
is also expensive, requiring ~$70k of equipment to set up, and pricy reagents and highly trained staff to maintain.
There is an unmet need in the market for a cost-effective digital pathology solution to rapidly produce high-quality
images. SurgiVance is developing a confocal-based Surgical Pathology System (SPS) to non-invasively and
rapidly image intact specimens with high resolution. The SPS system uses a novel, patented line-scanning,
stage-scanning confocal microscope. The NIH Phase 1 funded prototype successfully images standard sized
specimens (5 mm x 10 mm) in only 17 seconds, at 1.2 µm lateral resolution and 8.6 µm optical section thickness.
In this Phase II project, SurgiVance has 3 specific aims: 1) Recreate the prototype SPS device in a partner
facility, which will perform design and engineering work to miniaturize the device, reduce its complexity, and
increase its durability for market use, 2) develop AI-based software to rapidly scan and map the surfaces of fresh
samples resected directly from patients, and 3) clinically validate the superior performance of SPS created 3D
digital images of fresh tissue samples in comparison to the standard-of-care histopathology in Mohs patients in
benchmarks established by the SurgiVance FDA Q-Sub Class II, 510(k) pathway to meet beachhead market
needs. This Phase II study will enable SurgiVance to shift the paradigm towards instant, digital 3D pathology,
that when integrated with SurgiVance’s AI-based diagnostics, could enable robust, reproducible, and rapid
automated diagnoses.
摘要
诊断疾病在很大程度上依赖于对来自患者的组织样本进行病理分析。单就癌症而言,
在美国每年有超过3000万人接受组织活检。虽然手术是目前最好的
标准的护理治疗,以治愈浸润性癌症,其成功取决于及时切除肿瘤之前,
它可以传播。对于皮肤癌的切除尤其如此,皮肤癌在民众中比其他所有癌症都更常见。
恶性肿瘤相结合,莫氏手术被认为是治疗其高皮肤癌的最佳选择
rates.然而,该程序需要对患者组织样本进行重复的组织病理学评价,
癌组织或非癌组织的确认。这个耗时的步骤需要冷冻,切片,
将组织保存在显微镜载玻片之间以拍摄图像,增加2-3小时的手术时间。它
增加手术时间和术后并发症的风险,包括皮肤感染、出血或
血肿、伤口裂开(最近修复的伤口破裂)、组织坏死和疼痛。过程
也是昂贵的,需要约7万美元的设备来建立,昂贵的试剂和训练有素的工作人员来维护。
市场上存在对具有成本效益的数字病理学解决方案的未满足的需求,以快速产生高质量的
图像. SurgiVance正在开发一种基于共焦的外科病理学系统(SPS),
以高分辨率快速成像完整的标本。SPS系统采用了一种新颖的专利线扫描,
扫描共聚焦显微镜美国国立卫生研究院第一阶段资助的原型成功地成像标准尺寸
在1.2微米的横向分辨率和8.6微米的光学切片厚度下,仅需17秒即可完成样品(5 mm x 10 mm)的扫描。
在该第二阶段项目中,SurgiVance有3个具体目标:1)在合作伙伴中重新创建SPS器械原型
该设施将执行设计和工程工作,以简化设备,降低其复杂性,
提高其市场使用的耐用性,2)开发基于人工智能的软件,以快速扫描和绘制新鲜食品的表面,
直接从患者身上切除的样本,以及3)临床验证SPS创建3D的上级性能
与莫氏患者的标准治疗组织病理学相比,
由SurgiVance FDA Q-Sub Class II,510(k)途径建立的基准,以满足滩头市场
需求这项II期研究将使SurgiVance能够将范式转向即时数字3D病理学,
当与SurgiVance的基于AI的诊断集成时,可以实现稳健,可重复和快速的
自动诊断
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Summer Gareau其他文献
Daniel Summer Gareau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Summer Gareau', 18)}}的其他基金
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 102万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 102万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 102万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 102万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 102万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 102万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 102万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 102万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 102万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 102万 - 项目类别:
Grant-in-Aid for Scientific Research (B)