Leveraging Programmable Integrases for Human Genome Engineering
利用可编程集成进行人类基因组工程
基本信息
- 批准号:10002492
- 负责人:
- 金额:$ 243万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-09 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AgricultureBacteriaBiologicalBiologyBiomedical ResearchCategoriesClinicClustered Regularly Interspaced Short Palindromic RepeatsComplexDNADNA Double Strand BreakDNA IntegrationDNA RepairDiseaseElementsEngineeringEnhancersEukaryotic CellEventExhibitsGene ExpressionGenesGenetic DiseasesGenetic EngineeringGenomeGenome engineeringGenomicsGuide RNAHomologous GeneHuman GenomeIndustryIntegraseMalignant NeoplasmsMammalian CellMediatingMethodsMolecularRNARNA libraryRecombinant DNAResearchRoleSiteSpecificitySystemTechnologyTransposaseUntranslated RNAVirusVisionWorkengineered nucleasesgenetic payloadhomologous recombinationhuman diseasehuman modelimprovedinsightmolecular arraynucleaseprogramssite-specific integrationtool
项目摘要
PROJECT SUMMARY
LEVERAGING PROGRAMMABLE INTEGRASES FOR HUMAN GENOME ENGINEERING
The genetic engineering toolbox comprises a diverse array of molecular machineries for genome manipulation,
and DNA insertion methods have arguably had the largest impact on biomedical research. Gene knock-ins are
used in the clinic to treat genetic diseases and cancer, in industry to manufacture biologics, in agriculture to
improve crops, and in research to generate models of human disease, among many other uses. These
applications generally depend on either random integration mediated by viruses and transposases, or site-
specific integration mediated by homologous recombination and gene editing. The former category exhibits high
efficiency but little specificity, whereas the latter category is inherently precise but reliant on cellular factors and
thus ineffective. Only recently has a new molecular functionality been discovered that is both fully autonomous
and also highly accurate: programmable integrases directed by CRISPR RNAs.
CRISPR systems have revolutionized biology over the past decade because of how easily one can program
CRISPR-associated nucleases with guide RNAs to introduce DNA double-strand breaks, the precursor to DNA
repair. Whereas the inability to easily redesign engineered nucleases previously stalled gene-editing technology,
the discovery of RNA-guided DNA targeting eliminated this critical bottleneck. A similar bottleneck for engineered
integrases is now ready for elimination.
My central vision is to develop programmable, RNA-guided integrases as a powerful new platform
technology for human genome engineering. Building on our recent work that deciphered sequence determinants
of this technology in bacteria, as well as parallel studies that expanded the CRISPR–Cas subtypes that function
robustly in mammalian cells, we will embark upon a systematic effort to build the capabilities for employing these
multi-subunit integrases in eukaryotic cells. We will then develop the first tools for performing simultaneous,
multiplexed DNA insertion events across thousands of distinct genomic target sites using guide RNA libraries.
This approach will enable us to probe fundamental questions regarding the role of noncoding elements such as
enhancers and insulators in regulating gene expression. Furthermore, we will harness orthogonal integrases to
execute highly programmed translocation events and study the role of complex genome rearrangements in
disease and cancer. Our studies will contribute powerful new tools to the genetic engineering toolbox and open
the door to genomic manipulations that are inaccessible with any other experimental approach.
项目摘要
利用可编程集成技术进行人类基因组工程
基因工程工具箱包括用于基因组操作的各种分子机器,
DNA插入方法对生物医学研究的影响最大。基因敲入是
在临床上用于治疗遗传疾病和癌症,在工业上用于生产生物制剂,在农业上用于
改良农作物,研究人类疾病模型,以及其他许多用途。这些
应用通常依赖于由病毒和转座酶介导的随机整合,或位点-
通过同源重组和基因编辑介导的特异性整合。前一类显示高
效率高,但特异性小,而后一类本质上是精确的,但依赖于细胞因子,
因此无效。直到最近才发现了一种新的分子功能,
也是高度准确的:由CRISPR RNA指导的可编程整合酶。
CRISPR系统在过去十年中彻底改变了生物学,因为人们可以轻松编程
CRISPR相关核酸酶与引导RNA一起引入DNA双链断裂,即DNA的前体
修复.由于无法轻易地重新设计工程化核酸酶,基因编辑技术一度陷入停滞,
RNA引导的DNA靶向的发现消除了这一关键瓶颈。类似的工程瓶颈
整合酶现在可以消除了。
我的中心愿景是开发可编程的RNA引导的整合酶作为一个强大的新平台
人类基因组工程技术。基于我们最近破译序列决定子的工作
这项技术在细菌中的应用,以及扩展CRISPR-Cas亚型的平行研究,
在哺乳动物细胞中,我们将开始系统地努力建立使用这些细胞的能力,
真核细胞中的多亚基整合酶。然后,我们将开发第一个工具,
使用向导RNA文库在数千个不同的基因组靶位点上多重DNA插入事件。
这种方法将使我们能够探索关于非编码元件的作用的基本问题,例如
增强子和绝缘子调节基因表达。此外,我们将利用正交积分来
执行高度程序化的易位事件,并研究复杂基因组重排在
疾病和癌症。我们的研究将为基因工程工具箱提供强大的新工具,
基因组操作的大门,这是任何其他实验方法都无法达到的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Henry Sternberg其他文献
Samuel Henry Sternberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Henry Sternberg', 18)}}的其他基金
Impact of CRISPR-associated transposons on anti-phage immunity in Vibrio cholerae
CRISPR相关转座子对霍乱弧菌抗噬菌体免疫的影响
- 批准号:
10556364 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
Impact of CRISPR-associated transposons on anti-phage immunity in Vibrio cholerae
CRISPR相关转座子对霍乱弧菌抗噬菌体免疫的影响
- 批准号:
10432311 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
A high-performance and versatile technology for precision microbiome engineering
用于精密微生物组工程的高性能、多功能技术
- 批准号:
10278809 - 财政年份:2021
- 资助金额:
$ 243万 - 项目类别:
A high-performance and versatile technology for precision microbiome engineering
用于精密微生物组工程的高性能、多功能技术
- 批准号:
10624467 - 财政年份:2021
- 资助金额:
$ 243万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Developing Biological drones for attacking targeted bacteria
EAGER:开发攻击目标细菌的生物无人机
- 批准号:
2222345 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
Standard Grant
Chemical & Biological Interception of Cell-Cell Communication in Gram-Positive Bacteria
化学
- 批准号:
2108511 - 财政年份:2021
- 资助金额:
$ 243万 - 项目类别:
Standard Grant
Deriving biological principles from replication initiation control in bacteria
从细菌复制起始控制中得出生物学原理
- 批准号:
2016090 - 财政年份:2020
- 资助金额:
$ 243万 - 项目类别:
Standard Grant
Cultivation and molecular biological analysis of copper reducing bacteria as for a copper recycling from low-grade metal ore
低品位金属矿石回收铜还原菌的培养及分子生物学分析
- 批准号:
20K05407 - 财政年份:2020
- 资助金额:
$ 243万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidating the biological mechanisms underlying the motility of flagellated bacteria by understanding torque generation
通过了解扭矩的产生来阐明有鞭毛细菌运动的生物学机制
- 批准号:
2741993 - 财政年份:2020
- 资助金额:
$ 243万 - 项目类别:
Studentship
Metabolic engineering and synthetic biological utilization of coryneform bacteria aiming to expand its versatility as a production host
棒状细菌的代谢工程和合成生物利用,旨在扩大其作为生产宿主的多功能性
- 批准号:
19K15736 - 财政年份:2019
- 资助金额:
$ 243万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Biological Control of Dengue Disease Using Symbiotic Wolbachia Bacteria: Environmentally Safe and Inexpensive Approach
使用共生沃尔巴克氏菌生物控制登革热:环境安全且廉价的方法
- 批准号:
19KK0107 - 财政年份:2019
- 资助金额:
$ 243万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Establishment of a biological method to treat 1,4-dioxane in landfill leachate by selective enrichment and activation of indigenous 1,4-dioxane-degrading bacteria
通过选择性富集和活化本土1,4-二恶烷降解菌建立处理垃圾渗滤液中1,4-二恶烷的生物方法
- 批准号:
19H04301 - 财政年份:2019
- 资助金额:
$ 243万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of biological impacts on host plants by gut bacteria of tephritid fruit flies
阐明实蝇肠道细菌对宿主植物的生物学影响
- 批准号:
18K19217 - 财政年份:2018
- 资助金额:
$ 243万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Preparation of gnotobiotic marine earthworm for pollutant decomposition and analysis of biological functions of endogenous bacteria
污染物分解用知生海洋蚯蚓的制备及内源细菌生物学功能分析
- 批准号:
17K20075 - 财政年份:2017
- 资助金额:
$ 243万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)