A high-performance and versatile technology for precision microbiome engineering

用于精密微生物组工程的高性能、多功能技术

基本信息

项目摘要

PROJECT SUMMARY The mammalian gastrointestinal tract is home to a complex and diverse collection of microorganisms that play crucial roles in metabolism, host immunity, and central nervous system function. Despite a growing appreciation for the importance of a balanced microbiome on human health and behavior, and the wide range of diseases that can result from dysbiosis, our ability to study and modify complex microbial communities in vivo remains severely limited. Sequencing efforts can exhaustively catalog bacterial diversity and abundance, but offer only observational information; gnotobiotic research in mice allows for tight control over colonization, but fails to represent natural host-microbiome interactions; and genetic engineering can be used to manipulate specific genes or pathways in select microbes, but not within native environments. To address these shortcomings, we propose to develop an innovative platform technology for precision microbiome engineering that will, for the first time, enable gene- and species-specific editing in vivo. Our approach centers around two recent breakthroughs made in our laboratories: a method for generating precise DNA insertions using CRISPR- transposon systems (INTEGRATE technology), and a method for mobilizing genetic payloads within the gut using broad-host-range conjugative vectors (MAGIC technology). By combining and expanding these tools, we will develop programmable, self-driving elements that disseminate broadly while retaining exquisite nucleotide- level specificity for target genomes. Our preliminary data provide strong evidence to substantiate the basis of our proposal and demonstrate feasibility. In a recent collaborative effort, we developed INTEGRATE for kilobase-scale bacterial genome engineering by systematically assessing genome-wide insertion specificity across a panel of guide RNAs, and demonstrating efficient activity in multiple clinically and industrially relevant bacterial species. In Aim 1, we will identify hyperactive INTEGRATE variants that function autonomously and proliferatively, and develop a comprehensive guide RNA design algorithm that incorporates empirical off-target data and large metagenome assembly information. In Aim 2, we will combinate MAGIC with INTEGRATE to enable mobile transmission and targeted integration within complex in vitro communities, as well as in a mouse model. Finally, in Aim 3, we will apply our tool for both gain-of-function and loss-of-function studies in vivo: 1) to deliver bile salt hydrolase genes in the murine gut and investigate their corresponding effects on microbiome composition and host metabolism, and 2) to inactivate multidrug resistance genes in a Klebsiella pneumoniae disease model. Collectively, our studies will advance powerful new synthetic biology tools that can be broadly and flexibly applied within any complex bacterial community of interest, for both basic research and eventual therapeutic applications.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Henry Sternberg其他文献

Samuel Henry Sternberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Henry Sternberg', 18)}}的其他基金

Impact of CRISPR-associated transposons on anti-phage immunity in Vibrio cholerae
CRISPR相关转座子对霍乱弧菌抗噬菌体免疫的影响
  • 批准号:
    10556364
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
Impact of CRISPR-associated transposons on anti-phage immunity in Vibrio cholerae
CRISPR相关转座子对霍乱弧菌抗噬菌体免疫的影响
  • 批准号:
    10432311
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
A high-performance and versatile technology for precision microbiome engineering
用于精密微生物组工程的高性能、多功能技术
  • 批准号:
    10624467
  • 财政年份:
    2021
  • 资助金额:
    $ 68.85万
  • 项目类别:
Leveraging Programmable Integrases for Human Genome Engineering
利用可编程集成进行人类基因组工程
  • 批准号:
    10002492
  • 财政年份:
    2020
  • 资助金额:
    $ 68.85万
  • 项目类别:

相似海外基金

REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
  • 批准号:
    2349179
  • 财政年份:
    2024
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
  • 批准号:
    2349567
  • 财政年份:
    2024
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
  • 批准号:
    23K10982
  • 财政年份:
    2023
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
  • 批准号:
    RGPIN-2016-03885
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    DGECR-2022-00401
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Discovery Launch Supplement
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    RGPIN-2022-04570
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithm Design
算法设计
  • 批准号:
    CRC-2015-00122
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Canada Research Chairs
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
  • 批准号:
    22K17855
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
  • 批准号:
    2210849
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Continuing Grant
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
  • 批准号:
    569312-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了