A high-performance and versatile technology for precision microbiome engineering
用于精密微生物组工程的高性能、多功能技术
基本信息
- 批准号:10278809
- 负责人:
- 金额:$ 68.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithm DesignAreaAutomobile DrivingBacteriaBacterial GenesBacterial GenomeBasic ScienceBiologicalBiological ModelsCRISPR/Cas technologyCandidate Disease GeneCatalogsCellsClinicalClustered Regularly Interspaced Short Palindromic RepeatsCollectionCommunitiesComplexCoupledCustomDNADNA Double Strand BreakDataData PoolingData SetDirected Molecular EvolutionDiseaseDisease modelDrug resistanceElementsEngineeringEnvironmentEscherichia coliExhibitsFoundationsFutureGastrointestinal tract structureGene SilencingGenesGenetic EngineeringGenomeGenome engineeringGnotobioticGuide RNAHealth behaviorHomeHorizontal Gene TransferHumanHuman EngineeringHydrolaseHyperactivityImmunityIn SituIn VitroIndustrializationInsertional MutagenesisIntegraseKlebsiella oxytocaKlebsiella pneumoniaeKnock-outLaboratoriesMammalian CellMetabolismMetagenomicsMethodsMicrobeModificationMultidrug Resistance GeneMusMutationNamesNervous System PhysiologyNeuraxisNucleotidesOrthologous GeneOutcomePathway interactionsPerformancePhysiologicalPlasmidsPlayPseudomonas putidaRNA libraryRegulatory ElementResearchRoleScientistSpecificitySystemTechnologyTherapeuticTimeTransposaseVariantVibrio choleraeVisionWorkbacterial communitybasebile acid metabolismbile saltscarbapenemasedata integrationdesigndysbiosisexhaustionexperimental studyflexibilitygain of functiongenetic approachgenetic manipulationgenetic payloadgenome-wideglobal healthgut microbiomehomologous recombinationhost microbiomein vivoinnovationinsightinterestloss of functionmetabolic engineeringmetagenomemicrobial communitymicrobiomemicrobiome compositionmicrobiotamicroorganismmouse modelnext generationnovel therapeutic interventionnovel therapeuticspathogenpathogenic bacteriapreventprogramsrepairedresistance genereverse geneticsscreeningsite-specific integrationsynthetic biologytooltransmission processvector
项目摘要
PROJECT SUMMARY
The mammalian gastrointestinal tract is home to a complex and diverse collection of microorganisms that
play crucial roles in metabolism, host immunity, and central nervous system function. Despite a growing
appreciation for the importance of a balanced microbiome on human health and behavior, and the wide range of
diseases that can result from dysbiosis, our ability to study and modify complex microbial communities in vivo
remains severely limited. Sequencing efforts can exhaustively catalog bacterial diversity and abundance, but
offer only observational information; gnotobiotic research in mice allows for tight control over colonization, but
fails to represent natural host-microbiome interactions; and genetic engineering can be used to manipulate
specific genes or pathways in select microbes, but not within native environments. To address these
shortcomings, we propose to develop an innovative platform technology for precision microbiome engineering
that will, for the first time, enable gene- and species-specific editing in vivo. Our approach centers around two
recent breakthroughs made in our laboratories: a method for generating precise DNA insertions using CRISPR-
transposon systems (INTEGRATE technology), and a method for mobilizing genetic payloads within the gut
using broad-host-range conjugative vectors (MAGIC technology). By combining and expanding these tools, we
will develop programmable, self-driving elements that disseminate broadly while retaining exquisite nucleotide-
level specificity for target genomes.
Our preliminary data provide strong evidence to substantiate the basis of our proposal and demonstrate
feasibility. In a recent collaborative effort, we developed INTEGRATE for kilobase-scale bacterial genome
engineering by systematically assessing genome-wide insertion specificity across a panel of guide RNAs, and
demonstrating efficient activity in multiple clinically and industrially relevant bacterial species. In Aim 1, we will
identify hyperactive INTEGRATE variants that function autonomously and proliferatively, and develop a
comprehensive guide RNA design algorithm that incorporates empirical off-target data and large metagenome
assembly information. In Aim 2, we will combinate MAGIC with INTEGRATE to enable mobile transmission and
targeted integration within complex in vitro communities, as well as in a mouse model. Finally, in Aim 3, we will
apply our tool for both gain-of-function and loss-of-function studies in vivo: 1) to deliver bile salt hydrolase genes
in the murine gut and investigate their corresponding effects on microbiome composition and host metabolism,
and 2) to inactivate multidrug resistance genes in a Klebsiella pneumoniae disease model. Collectively, our
studies will advance powerful new synthetic biology tools that can be broadly and flexibly applied within any
complex bacterial community of interest, for both basic research and eventual therapeutic applications.
项目总结
哺乳动物的胃肠道是复杂多样的微生物集合的家园,这些微生物
在新陈代谢、宿主免疫和中枢神经系统功能中起着至关重要的作用。尽管不断增长的
认识到平衡的微生物群对人类健康和行为的重要性,以及广泛的
可能由生物失调引起的疾病,我们研究和修改体内复杂微生物群落的能力
仍然受到严格的限制。测序工作可以详尽地记录细菌的多样性和丰度,但
只提供观察性信息;在小鼠身上进行的诺生菌研究允许严格控制殖民,但
不能代表自然的宿主-微生物群相互作用;基因工程可以用来操纵
特定的基因或途径在选定的微生物中,但不在自然环境中。要解决这些问题
针对这些不足,我们提出开发一种用于精密微生物组工程的创新平台技术
这将首次实现体内特定于基因和物种的编辑。我们的方法主要围绕两个方面
我们实验室最近取得的突破:一种使用CRISPR生成精确DNA插入的方法-
转座子系统(集成技术)以及一种在肠道内动员遗传有效载荷的方法
使用广泛的宿主范围共轭向量(魔术技术)。通过组合和扩展这些工具,我们
将开发可编程的自动驾驶元件,在广泛传播的同时保留精致的核苷酸-
目标基因组的水平特异性。
我们的初步数据为我们的建议提供了强有力的证据,并证明了
可行性。在最近的一次合作中,我们开发了千碱基规模的细菌基因组整合
通过系统地评估一组引导RNA的全基因组插入特异性来进行工程,以及
在多种临床和工业相关的细菌物种中表现出有效的活性。在目标1中,我们将
识别自主和增殖功能的高度活跃的整合变体,并开发出
结合经验脱靶数据和大型元基因组的综合指导RNA设计算法
程序集信息。在目标2中,我们将把魔术和集成结合起来,以实现移动传输和
在复杂的体外群落中以及在小鼠模型中进行定向整合。最后,在目标3中,我们将
将我们的工具用于体内功能获得和功能丧失的研究:1)传递胆盐水解酶基因
并研究它们对微生物群组成和宿主代谢的相应影响,
2)在肺炎克雷伯菌病模型中灭活多药耐药基因。总的来说,我们的
研究将推动强大的新合成生物学工具,这些工具可以广泛而灵活地应用于任何
复杂的感兴趣的细菌群落,用于基础研究和最终的治疗应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Henry Sternberg其他文献
Samuel Henry Sternberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Henry Sternberg', 18)}}的其他基金
Impact of CRISPR-associated transposons on anti-phage immunity in Vibrio cholerae
CRISPR相关转座子对霍乱弧菌抗噬菌体免疫的影响
- 批准号:
10556364 - 财政年份:2022
- 资助金额:
$ 68.85万 - 项目类别:
Impact of CRISPR-associated transposons on anti-phage immunity in Vibrio cholerae
CRISPR相关转座子对霍乱弧菌抗噬菌体免疫的影响
- 批准号:
10432311 - 财政年份:2022
- 资助金额:
$ 68.85万 - 项目类别:
A high-performance and versatile technology for precision microbiome engineering
用于精密微生物组工程的高性能、多功能技术
- 批准号:
10624467 - 财政年份:2021
- 资助金额:
$ 68.85万 - 项目类别:
Leveraging Programmable Integrases for Human Genome Engineering
利用可编程集成进行人类基因组工程
- 批准号:
10002492 - 财政年份:2020
- 资助金额:
$ 68.85万 - 项目类别:
相似海外基金
REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
- 批准号:
2349179 - 财政年份:2024
- 资助金额:
$ 68.85万 - 项目类别:
Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 68.85万 - 项目类别:
Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 68.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
- 批准号:
RGPIN-2016-03885 - 财政年份:2022
- 资助金额:
$ 68.85万 - 项目类别:
Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
DGECR-2022-00401 - 财政年份:2022
- 资助金额:
$ 68.85万 - 项目类别:
Discovery Launch Supplement
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
RGPIN-2022-04570 - 财政年份:2022
- 资助金额:
$ 68.85万 - 项目类别:
Discovery Grants Program - Individual
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
- 批准号:
22K17855 - 财政年份:2022
- 资助金额:
$ 68.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
- 批准号:
2210849 - 财政年份:2022
- 资助金额:
$ 68.85万 - 项目类别:
Continuing Grant
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
- 批准号:
569312-2022 - 财政年份:2022
- 资助金额:
$ 68.85万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral