A high-performance and versatile technology for precision microbiome engineering

用于精密微生物组工程的高性能、多功能技术

基本信息

项目摘要

PROJECT SUMMARY The mammalian gastrointestinal tract is home to a complex and diverse collection of microorganisms that play crucial roles in metabolism, host immunity, and central nervous system function. Despite a growing appreciation for the importance of a balanced microbiome on human health and behavior, and the wide range of diseases that can result from dysbiosis, our ability to study and modify complex microbial communities in vivo remains severely limited. Sequencing efforts can exhaustively catalog bacterial diversity and abundance, but offer only observational information; gnotobiotic research in mice allows for tight control over colonization, but fails to represent natural host-microbiome interactions; and genetic engineering can be used to manipulate specific genes or pathways in select microbes, but not within native environments. To address these shortcomings, we propose to develop an innovative platform technology for precision microbiome engineering that will, for the first time, enable gene- and species-specific editing in vivo. Our approach centers around two recent breakthroughs made in our laboratories: a method for generating precise DNA insertions using CRISPR- transposon systems (INTEGRATE technology), and a method for mobilizing genetic payloads within the gut using broad-host-range conjugative vectors (MAGIC technology). By combining and expanding these tools, we will develop programmable, self-driving elements that disseminate broadly while retaining exquisite nucleotide- level specificity for target genomes. Our preliminary data provide strong evidence to substantiate the basis of our proposal and demonstrate feasibility. In a recent collaborative effort, we developed INTEGRATE for kilobase-scale bacterial genome engineering by systematically assessing genome-wide insertion specificity across a panel of guide RNAs, and demonstrating efficient activity in multiple clinically and industrially relevant bacterial species. In Aim 1, we will identify hyperactive INTEGRATE variants that function autonomously and proliferatively, and develop a comprehensive guide RNA design algorithm that incorporates empirical off-target data and large metagenome assembly information. In Aim 2, we will combinate MAGIC with INTEGRATE to enable mobile transmission and targeted integration within complex in vitro communities, as well as in a mouse model. Finally, in Aim 3, we will apply our tool for both gain-of-function and loss-of-function studies in vivo: 1) to deliver bile salt hydrolase genes in the murine gut and investigate their corresponding effects on microbiome composition and host metabolism, and 2) to inactivate multidrug resistance genes in a Klebsiella pneumoniae disease model. Collectively, our studies will advance powerful new synthetic biology tools that can be broadly and flexibly applied within any complex bacterial community of interest, for both basic research and eventual therapeutic applications.
项目概要 哺乳动物胃肠道是复杂多样的微生物的家园,这些微生物 在新陈代谢、宿主免疫和中枢神经系统功能中发挥着至关重要的作用。尽管不断增长 认识到平衡的微生物组对人类健康和行为的重要性,以及广泛的 生态失调可能导致的疾病,我们研究和修改体内复杂微生物群落的能力 仍然受到严重限制。测序工作可以详尽地记录细菌多样性和丰度,但是 仅提供观察信息;对小鼠进行的限生研究可以严格控制定植,但是 无法代表自然的宿主-微生物组相互作用;基因工程可以用来操纵 特定微生物中的特定基因或途径,但不在天然环境中。为了解决这些 缺点,我们建议开发一种用于精密微生物组工程的创新平台技术 这将首次实现体内基因和物种特异性编辑。我们的方法围绕两个 我们实验室最近取得的突破:一种使用 CRISPR 生成精确 DNA 插入的方法- 转座子系统(整合技术),以及在肠道内调动遗传有效负载的方法 使用广泛宿主范围的接合载体(MAGIC 技术)。通过组合和扩展这些工具,我们 将开发可编程的、自动驱动的元件,在保留精致的核苷酸的同时广泛传播 目标基因组的水平特异性。 我们的初步数据提供了强有力的证据来证实我们提案的基础并证明 可行性。在最近的一项合作中,我们开发了用于千碱基级细菌基因组的 INTEGRATE 通过系统地评估一组引导RNA的全基因组插入特异性来进行工程设计,以及 在多种临床和工业相关细菌物种中表现出有效的活性。在目标 1 中,我们将 识别自主和增殖功能的过度活跃的 INTEGRATE 变体,并开发 综合指导RNA设计算法,结合了经验脱靶数据和大型宏基因组 装配信息。在目标2中,我们将MAGIC与INTEGRATE相结合,以实现移动传输和 在复杂的体外群落以及小鼠模型中进行有针对性的整合。最后,在目标 3 中,我们将 应用我们的工具进行体内功能获得和功能丧失研究:1) 传递胆汁盐水解酶基因 在小鼠肠道中并研究它们对微生物组组成和宿主代谢的相应影响, 2) 灭活肺炎克雷伯菌疾病模型中的多药耐药基因。总的来说,我们的 研究将推进强大的新合成生物学工具,这些工具可以广泛、灵活地应用于任何领域 感兴趣的复杂细菌群落,用于基础研究和最终的治疗应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Henry Sternberg其他文献

Samuel Henry Sternberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Henry Sternberg', 18)}}的其他基金

Impact of CRISPR-associated transposons on anti-phage immunity in Vibrio cholerae
CRISPR相关转座子对霍乱弧菌抗噬菌体免疫的影响
  • 批准号:
    10556364
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
Impact of CRISPR-associated transposons on anti-phage immunity in Vibrio cholerae
CRISPR相关转座子对霍乱弧菌抗噬菌体免疫的影响
  • 批准号:
    10432311
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
A high-performance and versatile technology for precision microbiome engineering
用于精密微生物组工程的高性能、多功能技术
  • 批准号:
    10624467
  • 财政年份:
    2021
  • 资助金额:
    $ 68.85万
  • 项目类别:
Leveraging Programmable Integrases for Human Genome Engineering
利用可编程集成进行人类基因组工程
  • 批准号:
    10002492
  • 财政年份:
    2020
  • 资助金额:
    $ 68.85万
  • 项目类别:

相似海外基金

REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
  • 批准号:
    2349179
  • 财政年份:
    2024
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
  • 批准号:
    2349567
  • 财政年份:
    2024
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
  • 批准号:
    23K10982
  • 财政年份:
    2023
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    DGECR-2022-00401
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Discovery Launch Supplement
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
  • 批准号:
    RGPIN-2016-03885
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    RGPIN-2022-04570
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithm Design
算法设计
  • 批准号:
    CRC-2015-00122
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Canada Research Chairs
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
  • 批准号:
    22K17855
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
  • 批准号:
    2210849
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Continuing Grant
Spectral Techniques in Algorithm Design and Analysis
算法设计和分析中的谱技术
  • 批准号:
    RGPIN-2020-04385
  • 财政年份:
    2022
  • 资助金额:
    $ 68.85万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了