CRCNS: Real-time neural decoding for calcium imaging
CRCNS:钙成像实时神经解码
基本信息
- 批准号:10001622
- 负责人:
- 金额:$ 22.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimalsAttentionBRAIN initiativeBehaviorBiological ModelsBrainBrain DiseasesCalciumCellsCognitionCollectionComplexComputer softwareDataData AnalysesDetectionDevicesDiseaseElectrodesEmotionsEncapsulatedEpilepsyEsthesiaEtiologyEventFeedbackFiberFrequenciesGenerationsImageKnowledgeLaboratoriesLanguageLearningLinkLocationMagnetic Resonance ImagingMasksMeasuresMemoryMethodsModelingMonitorMotionMovementNetwork-basedNeurocognitiveNeuronsNeurosciencesPainPatientsPerceptionPerformancePhotometryPrincipal InvestigatorProcessRecordsResearchResolutionScienceScientistSleepSpeedStreamSystemTechniquesTimeTrainingVisionWakefulnessWorkautomated algorithmbasecellular imagingcost efficientdata acquisitiondata streamsdeep neural networkdesignexperimental studyhigh dimensionalityimprovedin vivoinnovationmultidimensional datanervous system disordernetwork architectureneural circuitneural stimulationneuromechanismneuroregulationneurotransmissionnoveloptical imagingoptogeneticspredictive modelingprogramsprototypereal-time imagesrelating to nervous systemsignal processingspatiotemporaltemporal measurementtool
项目摘要
Program Director/Principal Investigator (Last, First, Middle): Chen, Rong
PROJECT DESCRIPTION
A. BACKGROUND AND SIGNIFICANCE
Real-time neural decoding centers on predicting behavior variables based on neural activity data,
where the prediction is performed at a pace that reliably keeps up with the speed of the activity
that is being monitored. Neuromodulation devices are becoming one of the most powerful tools
for the treatment of brain disorders, enhancing neurocognitive performance, and demonstrating
causality (Bergmann et al., 2016; Knotkova and Rasche, 2015). A precise neuromodulation
system (Figure 1) integrates neural activity monitoring, real-time neural decoding, and
neuromodulation. In precise neuromodulation, a decoding device predicts a behavior variable
based on neural data streams in real-time. Based on the decoding results, neuromodulation
parameters such as timing, frequency, duration, and amplitude are changed. Precise
neuromodulation systems with closed-loop real-time feedback are superior to the fixed (open-
loop) neuromodulation paradigm (Brocker et al., 2017; deBettencourt et al., 2015; Ezzyat et al.,
2017). A recent direct brain stimulation study (Ezzyat et al., 2017) demonstrated significant
advantages of precise neuromodulation over open-loop neuromodulation. Ezzyat et al. applied
direct brain stimulation with decoding capability to patients with epilepsy to improve their memory.
They found that stimulation increased memory function only if delivered when the decoding device
indicated low encoding efficiency while stimulation decreased memory function if delivered when
the decoding device indicated high encoding efficiency. An open-loop neuromodulation system
with a fixed stimulation paradigm may not always facilitate memory function.
Miniature cellular imaging (Ghosh et al., 2011; Kerr and Nimmerjahn, 2012; Scott et al., 2013)
is one of the most powerful ways to study neural circuits. It enables us to investigate neural circuits
during behaviors for an understanding of network architecture of behavior, cognition, and emotion.
Miniature cellular imaging records neuronal activity at cellular and sub-second levels of spatial
and temporal resolution in freely moving animals. Miniature cellular imaging has many
advantages. First, compared with in vivo multi-electrode recording, miniature calcium imaging can
probe all cells in the field of view, and visualize the spatial location of monitored cells (Kerr et al.,
2005). Second, compared with magnetic resonance imaging, which measures brain activity at the
macroscopic scale and with low temporal resolution, miniature cellular imaging provides high
spatial and temporal resolution. Third, fiber photometry (Cui et al., 2014) lacks cellular-level
resolution, while miniature cellular imaging allows concurrent tracking of neural calcium activities
at cellular spatial resolution.
Simultaneous neural activity
monitoring and intetvention
Stimulation Calcium
imaging
Real-time
decoding system
Figure 1 A precise neuromodulation system. Our project
centers on developing RNDC-Lab.
PHS 398 (Rev. 01 /18 Approved Through 03/31/2020)
Page 26
Miniature cellular imaging with real-
time decoding capability captures the
central vision of brain science, (The
brain initiative, 2014). Combined with
optogenetics, it is a tremendous asset
to studying neural mechanisms
underlying normal and disease states,
and leads to precise neuromodulation.
However, developing such systems is
a challenging task. A major obstacle is
the analysis of the large imaging
streams that are generated. The
massive high-dimensional data
streams that are generated include
0MB No. 0925-0001
项目主任/首席研究员(后、一、中):陈荣
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHUVRA S BHATTACHARYYA其他文献
SHUVRA S BHATTACHARYYA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHUVRA S BHATTACHARYYA', 18)}}的其他基金
CRCNS: Real-time neural decoding for calcium imaging
CRCNS:钙成像实时神经解码
- 批准号:
9769912 - 财政年份:2018
- 资助金额:
$ 22.79万 - 项目类别:
相似海外基金
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 22.79万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 22.79万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2017
- 资助金额:
$ 22.79万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2016
- 资助金额:
$ 22.79万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2015
- 资助金额:
$ 22.79万 - 项目类别:
Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
- 批准号:
8810865 - 财政年份:2015
- 资助金额:
$ 22.79万 - 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2015
- 资助金额:
$ 22.79万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2013
- 资助金额:
$ 22.79万 - 项目类别:
Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
- 批准号:
FT110100972 - 财政年份:2012
- 资助金额:
$ 22.79万 - 项目类别:
ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
- 批准号:
DP120103813 - 财政年份:2012
- 资助金额:
$ 22.79万 - 项目类别:
Discovery Projects














{{item.name}}会员




