Photochemical determination of sodium channel voltage-dependent gating and composition
钠通道电压依赖性门控和成分的光化学测定
基本信息
- 批准号:10004154
- 负责人:
- 金额:$ 33.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-20 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmino AcidsArrhythmiaAtrial FibrillationBiologicalBiologyCardiovascular systemCellsChemicalsChemistryCommunitiesComplexComputer ModelsCouplingDataDefectDiseaseDrug TargetingEpilepsyEventGap JunctionsGenerationsHealthHeartHumanImpairmentInheritedIon ChannelIonsMapsMass Spectrum AnalysisMembraneMembrane ProteinsMethodsMolecularMolecular ConformationMolecular StructureMovementMuscleMutationNervous system structureNeuronsOpticsPainPathologyPeptidesProtein AnalysisProtein IsoformsProteinsRegulationReperfusion InjuryResearchResolutionRestRoleSignal TransductionSiteSodium ChannelStructureSudden infant death syndromeSyndromeTestingTherapeuticTimeTissuesbasecrosslinkcyanine dye 5designdisease-causing mutationelectrical measurementexperimental studyfluorophorehuman diseaseimprovedinsightischemic injurymolecular dynamicsnovelnovel strategiesprotein protein interactionreceptorsingle moleculesingle-molecule FRETsmall moleculestoichiometrysuccesstooltraffickingunnatural amino acidsvoltagevoltage clamp
项目摘要
Voltage-gated sodium channels (NaVs) maintain the electrical cadence of neurons and muscle tissues by
selectively controlling the rapid inward passage of their namesake ion. The essential NaV complex is
comprised of a 260-kDa pore-forming alpha subunit (encoded by NaV1.1-1.9) that is partnered with beta
subunits (1–4). Defects in sodium channel function resulting from inherited mutations or channel
dysmodulation are established causes of human disease, and are associated with sudden infant death,
arrhythmia and pain-causing syndromes. While there is an urgent need to better understand the molecular
basis for perturbed NaV function, there are few research tools available to obtain these insights, and these
persistent technical barriers slow the pace of discovery in the study of many types of and membrane proteins.
NaVs have begun to benefit from atomic-resolution structures of related bacterial NaVs, but in addition to their
evolved differences from eukaryotic channels, these proteins are analyzed in the absence of membrane
voltage and thus the relevance of the conformations examined is unclear. For eukaryotic NaVs, key
unaddressed issues include structural differences between the resting and inactivated channel states, the
mechanism of inactivation and the role of the C-terminus, the impact of inherited mutations on molecular gating
events, and the molecular basis of the NaV channel regulation by -subunits. We have developed a number of
complementary chemical biology research tools that will provide essential new information about the function
of NaVs: (a) We have streamlined the used of genetically encoded cross-linking amino acids with novel click-
chemistry functionality that, when used in combination with mass spectrometry, enables the discovery of
transient inter- and intra-peptide interaction networks in live cells. (b) We have developed a powerful new
approach whereby Cy3 and Cy5 are encoded as unnatural amino acids into membrane proteins in live cells.
This approach will allow for encoded single molecule fluorescence resonance energy transfer (smFRET) and
the direct measurement of electrically silent conformational dynamics of membrane proteins in a live cell under
voltage control. (c) An all-atom computational model of the eukaryotic NaV that will guide and support our
efforts to determine conformational movement and non-covalent interactions in NaVs. We propose to: (1)
advance the mechanistic understanding of sodium channel gating, with a focus on inactivation given its
outsized role in human disease, and the conformational differences and energetic coupling between resting
and inactivated conformations; (2) obtain an optically generated relative distance map of key gating states of
single NaVs and how these distances are effected by disease causing mutations; and (3) provide the basis of
-subunit regulation, including the molecular identification of interaction sites and mechanisms of disease
causing mutations. These three aims are geared towards high impact discovery and are highly relevant to
understanding multiple pathologies and the molecular mechanisms of electrical signaling.
电压门控钠通道(NaVs)通过以下途径维持神经元和肌肉组织的电节律:
选择性地控制其同名离子的快速向内通道。基本的NaV复合物是
由260-kDa的成孔α亚基(由NaV1.1-1.9编码)组成,该亚基与β
亚基(A1-A4)。由遗传性突变或通道引起的钠通道功能缺陷
失调是人类疾病的既定原因,并且与婴儿猝死有关,
心律不齐和疼痛综合征。虽然迫切需要更好地了解分子
作为扰动NaV函数的基础,很少有研究工具可用于获得这些见解,这些
持续的技术障碍减缓了许多类型的膜蛋白研究的发现速度。
NaVs已经开始受益于相关细菌NaVs的原子分辨率结构,但除了它们的
从真核细胞通道进化的差异,这些蛋白质在膜的情况下进行分析,
电压,因此检查的构象的相关性是不清楚的。对于真核NaV,关键是
未解决的问题包括静息和失活通道状态之间的结构差异,
失活机制和C-末端的作用,遗传突变对分子门控的影响
事件,以及α-亚基调控NaV通道的分子基础。我们开发了一系列
补充化学生物学研究工具,将提供有关功能的重要新信息
(a)我们已经简化了具有新型点击的遗传编码的交联氨基酸的使用,
化学功能,当与质谱法结合使用时,能够发现
活细胞中的瞬时肽间和肽内相互作用网络。(b)我们开发了一种强大的新
通过这种方法,Cy 3和Cy 5作为非天然氨基酸被编码到活细胞中的膜蛋白中。
这种方法将允许编码的单分子荧光共振能量转移(smFRET)和
直接测量电沉默的构象动力学的膜蛋白在活细胞下,
电压控制(c)真核NaV的全原子计算模型将指导和支持我们的研究。
努力确定构象运动和非共价相互作用的NaV。我们建议:(1)
推进钠通道门控的机制理解,重点是失活,
在人类疾病中的巨大作用,以及静息态之间的构象差异和能量耦合
和失活构象;(2)获得光学生成的关键门控状态的相对距离图,
单个NaV以及这些距离如何受到致病突变的影响;以及(3)提供以下基础:
α-亚基调控,包括相互作用位点和疾病机制的分子鉴定
导致突变。这三个目标是面向高影响力的发现,并高度相关,
了解多种病理和电信号的分子机制。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mining Protein Evolution for Insights into Mechanisms of Voltage-Dependent Sodium Channel Auxiliary Subunits.
挖掘蛋白质进化以深入了解电压依赖性钠通道辅助亚基的机制。
- DOI:10.1007/164_2017_75
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Molinarolo,Steven;Granata,Daniele;Carnevale,Vincenzo;Ahern,ChristopherA
- 通讯作者:Ahern,ChristopherA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher A Ahern其他文献
Christopher A Ahern的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher A Ahern', 18)}}的其他基金
Chemical biology of voltage-gated cation channels
电压门控阳离子通道的化学生物学
- 批准号:
10552311 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
A Versatile Chemical-Genetic Approach to Determine Bases for Arrhythmogenesis and Sodium Channelopathies
确定心律失常发生和钠离子通道病基础的多功能化学遗传学方法
- 批准号:
10608370 - 财政年份:2022
- 资助金额:
$ 33.93万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10334544 - 财政年份:2021
- 资助金额:
$ 33.93万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10156779 - 财政年份:2021
- 资助金额:
$ 33.93万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10550272 - 财政年份:2021
- 资助金额:
$ 33.93万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10407714 - 财政年份:2021
- 资助金额:
$ 33.93万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10627046 - 财政年份:2021
- 资助金额:
$ 33.93万 - 项目类别:
Mining the tRNA genome by live-cell imaging
通过活细胞成像挖掘 tRNA 基因组
- 批准号:
10005950 - 财政年份:2019
- 资助金额:
$ 33.93万 - 项目类别:
Photochemical determination of sodium channel voltage-dependent gating and composition
钠通道电压依赖性门控和成分的光化学测定
- 批准号:
9402276 - 财政年份:2017
- 资助金额:
$ 33.93万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 33.93万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 33.93万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 33.93万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 33.93万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 33.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 33.93万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 33.93万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists