Mechanisms of Replication-Dependent Microsatellite Instability in Human Disease
人类疾病中复制依赖性微卫星不稳定性的机制
基本信息
- 批准号:10004155
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-08 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAppearanceBinding ProteinsBiochemicalBiochemistryBiological AssayBromodeoxyuridineCAG repeatCell LineCellsChromosomal BreaksChromosomal translocationChromosomesCleaved cellClustered Regularly Interspaced Short Palindromic RepeatsComplementCoupledDNADNA DamageDNA Double Strand BreakDNA Repair GeneDNA Repair PathwayDNA SequenceDNA StructureDNA analysisDNA biosynthesisDNA replication forkDNA sequencingDNA-Directed DNA PolymeraseDangerousnessDefectDevelopmentEventExcisionFanconi&aposs AnemiaFlow CytometryG-QuartetsGenesGenetic DiseasesGenetic RecombinationGenomeGenomicsGoalsHSV-Tk GeneHela CellsHumanHuman GenomeInverse Polymerase Chain ReactionKnock-outKnowledgeLabelLeadLocationMaintenanceMalignant NeoplasmsMass Spectrum AnalysisMeasuresMicrosatellite InstabilityMicrosatellite RepeatsMolecularMutagenesisMutateMutationNonhomologous DNA End JoiningPathway interactionsPatientsPolymeraseProtein DeficiencyProteinsPurinesPyrimidineReplication OriginRoleSignal TransductionSiteSmall Interfering RNASourceStainsStructureTertiary Protein StructureTestingTherapeuticTimeWorkbasec-myc Geneschromatin immunoprecipitationchromosome mutationchromothripsisendonucleaseenvironmental agentexperimental studyhelicasehuman diseaseinhibitor/antagonistknock-downmutantnucleasepredicting responsepreventrepairedreplication stressreplicatorresponsesingle moleculetargeted treatmenttranslational impacttriplex DNA
项目摘要
Chromosome breaks are the most dangerous form of DNA damage because they result in multiple types of
mutations and gross chromosome rearrangements. DNA is most sensitive to breakage during replication, when
hard-to-replicate noncanonical DNA structures cause replication fork stalling. Noncanonical DNA structures are
strongly implicated as endogenous sources of chromosome breaks and translocations leading to
developmental defects and cancers, however, the mechanisms by which replication fork stalling causes DNA
double strand breaks (DSBs) are not known.
Despite significant analyses of DNA damage response proteins in global or single molecule studies where
the sites of damage are not identified, the molecular mechanisms of replication-dependent DNA strand
breakage and repair at specific sites in human cells are incompletely understood. To address this knowledge
gap, we will study two types of natural replication barriers (CTG/CAG trinucleotide repeats and asymmetric
purine-pyrimidine (Pu/Py) mirror repeats) integrated at an ectopic site in the human genome where their
structure and effect on replication can be manipulated. We also examine several endogenous replication fork
barriers that induce DSBs during DNA replication. We will use PCR, DNA sequencing, chromatin
immunoprecipitation, mass spectrometry and flow cytometry to show (1) how polymerase stalling at
noncanonical DNA structures causes DSBs, (2) how DNA repair proteins act to remodel stalled replication
forks to restart synthesis, and (3) the mechanisms and genomic consequences of DSB recombination at
structure-induced fork barriers.
We will test the hypothesis that noncanonical DNA structures induce DSB by blocking the progress of DNA
polymerases, promoting nuclease-sensitive fork regression, and inhibiting DNA end processing required for
recombination. Conceptual advances from this work will include determination of the molecular mechanisms of
DSB formation near specific stalled forks, biochemical analysis of replication fork reversal, and identification of
how the processing of structure-induced DSB differs that of nuclease-induced `clean' DSB. Our long-term goal
is to define the role of DNA structure-induced g e n o m e instability in human disease.
Aim 1 will disclose the relationship between fork stalling and damage signaling, the biochemistry of fork
reversal, the function of structure-specific endonucleases at stalled forks, and the impact of DNA secondary
structure on fork resection and repair. Aim 2 will build on our demonstration that the Fanconi anemia type J
protein (FANCJ) is essential for the maintenance of noncanonical DNA structures across the genome during
replication stress, to determine the mechanisms of FANCJ dependent microsatellite stabilization. In Aim 3 we
will characterize the genomic consequences of FANCJ deficiency. Our experiments will show how hard-to-
replicate DNA sequences cause chromosome breaks and mutations that lead to genetic disease.
染色体断裂是最危险的DNA损伤形式,因为它们会导致多种类型的
突变和总的染色体重排。DNA在复制过程中对断裂最敏感,当
难以复制的非规范DNA结构导致复制分叉停滞。非规范的DNA结构有
与导致染色体断裂和易位的内源性来源密切相关
然而,发育缺陷和癌症,复制分叉停滞导致DNA的机制
双链断裂(DSB)是未知的。
尽管在全球或单分子研究中对DNA损伤反应蛋白进行了重要的分析,
损伤的位置尚未确定,复制依赖的DNA链的分子机制
人类细胞中特定部位的断裂和修复还不完全清楚。要解决这一知识
GAP,我们将研究两种类型的自然复制障碍(CTG/CAG三核苷酸重复和不对称
嘌呤-嘧啶(Pu/Py)镜像重复序列)整合在人类基因组中的一个异位位置
复制的结构和效果是可以操纵的。我们还研究了几个内源复制分叉
在DNA复制过程中导致双链断裂的障碍。我们将使用聚合酶链式反应,DNA测序,染色质
免疫沉淀、质谱学和流式细胞术显示(1)聚合酶如何停滞在
非规范DNA结构导致DSB,(2)DNA修复蛋白如何作用于重塑停滞的复制
分支以重新开始合成,以及(3)DSB重组的机制和基因组后果
结构诱导的叉形障碍。
我们将检验这样一种假设,即非规范的DNA结构通过阻止DNA的前进来诱导DSB
聚合酶,促进核酸酶敏感的分叉回归,并抑制DNA末端处理所需的
重组。这项工作的概念性进展将包括确定
DSB在特定失速叉子附近的形成,复制叉子反转的生化分析,以及
结构诱导的DSB的处理与核酸酶诱导的“干净”DSB的处理有何不同。我们的长期目标
目的是确定DNA结构诱导的基因不稳定性在人类疾病中的作用。
目标1将揭示叉子失速与损伤信号的关系,叉子的生化
逆转,结构特异性内切酶在失速叉子上的功能,以及DNA次级的影响
叉子切除和修复上的结构。目标2将建立在我们的论证的基础上,即J型范可尼贫血
蛋白质(FANCJ)是维持整个基因组的非规范DNA结构所必需的
复制应激,以确定FANCJ依赖的微卫星稳定化的机制。在《目标3》中我们
将表征FANCJ缺乏症的基因组后果。我们的实验将证明-
复制DNA序列会导致染色体断裂和突变,从而导致遗传病。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis.
- DOI:10.1038/cr.2016.66
- 发表时间:2016-07
- 期刊:
- 影响因子:44.1
- 作者:
- 通讯作者:
Break-induced replication links microsatellite expansion to complex genome rearrangements.
断裂诱导的复制将微卫星扩展与复杂的基因组重排。
- DOI:10.1002/bies.201700025
- 发表时间:2017-08
- 期刊:
- 影响因子:0
- 作者:Leffak M
- 通讯作者:Leffak M
Analysis of Trinucleotide Repeat Stability by Integration at a Chromosomal Ectopic Site.
通过染色体异位位点整合分析三核苷酸重复稳定性。
- DOI:10.1007/978-1-4939-9784-8_8
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Gadgil,RujutaYashodhan;RiderJr,SDean;Lewis,Todd;Barthelemy,Joanna;Leffak,Michael
- 通讯作者:Leffak,Michael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael LEFFAK其他文献
Michael LEFFAK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael LEFFAK', 18)}}的其他基金
Second-site genetic modifiers of CTG/CAG microsatellite stability
CTG/CAG 微卫星稳定性的第二位点遗传修饰剂
- 批准号:
8652473 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Second-site genetic modifiers of CTG/CAG microsatellite stability
CTG/CAG 微卫星稳定性的第二位点遗传修饰剂
- 批准号:
8870378 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Second-site genetic modifiers of CTG/CAG microsatellite stability
CTG/CAG 微卫星稳定性的第二位点遗传修饰剂
- 批准号:
8218826 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Second-site genetic modifiers of CTG/CAG microsatellite stability
CTG/CAG 微卫星稳定性的第二位点遗传修饰剂
- 批准号:
8464166 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
The Role of the DNA Unwinding Element Binding Protein, DUE-B, in DNA Replication
DNA 解旋元件结合蛋白 DUE-B 在 DNA 复制中的作用
- 批准号:
7846744 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Analysis of the Human c-myc Gene Replication Origin
人类c-myc基因复制起点分析
- 批准号:
7032445 - 财政年份:1996
- 资助金额:
$ 30万 - 项目类别:
Analysis of the Human c-myc Gene Replication Origin
人类c-myc基因复制起点分析
- 批准号:
7226647 - 财政年份:1996
- 资助金额:
$ 30万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists