4D Transcranial Acoustoelectric Imaging for High Resolution Functional Mapping of Neuronal Currents
4D 经颅声电成像用于神经元电流的高分辨率功能映射
基本信息
- 批准号:10007275
- 负责人:
- 金额:$ 68.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:4D ImagingAcousticsAdultBehavior DisordersBehavioralBrainBrain MappingBrain imagingBrain regionCerebrovascular CirculationDiagnosisDiseaseElectricityElectrodesElectroencephalographyElectrophysiology (science)ElementsEngineeringEpilepsyEquipmentEvoked PotentialsExcisionFamily suidaeFocused UltrasoundFrequenciesFunctional ImagingFunctional Magnetic Resonance ImagingGoalsHeadHumanImageImaging DeviceInterventionIntractable EpilepsyMapsMeasuresMechanicsMental DepressionMental disordersModalityModelingMonitorMotionNeurologicNeuronavigationNeuronsNeurosciencesNoiseOperative Surgical ProceduresOutcomeParkinson DiseasePatientsPerformancePhysiologic pulsePhysiologicalPositioning AttributePositron-Emission TomographyPsychologistResolutionScanningSeizuresSensorySignal TransductionSomatosensory Evoked PotentialsSpeedStructureSurfaceSystemTechnologyThalamic structureTimeUltrasonic TransducerUltrasonographyValidationVisionbrain volumecraniumdata acquisitiondensityhealthy volunteerhigh resolution imaginghuman subjectimagerimaging platformimprovedin vivomobile computingmultidisciplinarynervous system disordernext generationnovelprototyperadio frequencyrelating to nervous systemsensortemporal measurement
项目摘要
ABSTRACT
The overarching goal of this project is to optimize, validate and implement a revolutionary and safe modality
for noninvasive functional imaging of neural currents deep in the human brain through the skull at
unprecedented spatial and temporal resolution. Transcranial Acoustoelectric Brain Imaging (tABI) is a
disruptive technology that exploits pulses of ultrasound (US) to transiently interact with physiologic current,
producing a radiofrequency (RF) signature detected by one or more sensors (e.g., surface electrodes). By
rapidly sweeping the US beam and simultaneously detecting these RF modulations, 4D high resolution current
density maps are generated. This approach overcomes limitations with electroencephalography (EEG), which
suffers from poor spatial resolution and inaccuracies due to blurring of electrical signals as they pass through
the brain and skull, and, unlike fMRI and PET that measure slow “intrinsic” signals, tABI directly maps fast
time-varying current within a defined brain volume at the mm and ms scales. As a disruptive and scalable
modality for noninvasive human brain imaging, tABI offers the following benefits: 1) High spatial resolution
determined by the US focus (e.g., 0.3 – 3 mm); 2) Real-time, volumetric imaging of local field potentials and
evoked activity; 3) 4D imaging of neural currents from deep brain structures without assuming the
conductivity distribution; and 4) Co-registration of neural currents (tABI) with brain structure, motion (pulse
echo US) and cerebral blood flow (Doppler). Our multidisciplinary team of engineers, physicists,
neuroscientists, psychologists, and imagers will overcome the primary challenge of detecting weak interaction
signals through skull at safe US intensities. To demonstrate tABI as a safe and reliable modality for electrical
brain imaging at the mm and ms scales in healthy volunteers, we propose to 1) Optimize, calibrate, and
validate tABI using established human head and in vivo swine models; 2) Develop and validate the first tABI
platform for functional brain imaging in human subjects; 2a) Assess extraoperative tABI for mapping patients
with intractable epilepsy referred for surgery; and 2b) Assess tABI for mapping somatotopic organization in
healthy volunteers. If successful, this project will deliver a safe, revolutionary and mobile technology for
noninvasive human brain imaging with the goal of transforming our understanding of brain function and help
diagnose, stage, monitor and treat a wide variety of neurologic (e.g., epilepsy, Parkinson’s), psychiatric (e.g.,
depression) and behavioral (e.g., OCD) disorders.
摘要
该项目的总体目标是优化、验证和实施一种革命性的安全模式
通过颅骨对人脑深处的神经电流进行非侵入性功能成像,
前所未有的时空分辨率。经颅声电脑成像(tABI)是一种
利用超声波(US)脉冲与生理电流瞬时相互作用的破坏性技术,
产生由一个或多个传感器检测到的射频(RF)特征(例如,表面电极)。通过
快速扫描US波束并同时检测这些RF调制,4D高分辨率电流
生成密度图。这种方法克服了脑电图(EEG)的局限性,
由于电信号通过时的模糊,
与功能磁共振成像(fMRI)和正电子发射断层成像(PET)测量缓慢的“内在”信号不同,tABI直接快速映射
在mm和ms尺度下的限定脑体积内的时变电流。作为一种颠覆性的、可扩展的
作为一种非侵入性的人脑成像方式,tABI具有以下优点:1)高空间分辨率
由美国焦点确定(例如,0.3 2)局部场电位的实时体积成像,以及
诱发活动; 3)来自深部脑结构的神经电流的4D成像,而不假设
电导率分布;以及4)神经电流(tABI)与脑结构、运动(脉搏)的共配准
超声(echo US)和脑血流(Doppler)。我们的工程师,物理学家,
神经科学家、心理学家和成像学家将克服检测弱相互作用的主要挑战
以安全的超声强度通过颅骨发出信号。为了证明tABI是一种安全可靠的电治疗方式,
在健康志愿者的mm和ms尺度的脑成像中,我们建议1)优化,校准,
使用已建立的人头部和体内猪模型验证tABI; 2)开发并验证第一个tABI
用于人类受试者中的功能性脑成像的平台; 2a)评估用于标测患者的手术外tABI
难治性癫痫转诊手术;和2b)评估tABI,用于标测
健康志愿者如果成功,该项目将提供一种安全,革命性和移动的技术,
非侵入性人脑成像,旨在改变我们对大脑功能的理解,
诊断、分期、监测和治疗各种神经系统疾病(例如,癫痫,帕金森氏症),精神病(例如,
抑郁症)和行为(例如,强迫症)障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell S Witte其他文献
IVUS beyond the horizon.
IVUS 超出地平线。
- DOI:
10.4244/eijv2i1a23 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
A. V. D. van der Steen;R. Baldewsing;F. Levent Degertekin;S. Emelianov;M. Frijlink;Yuji Furukawa;David E. Goertz;Mustafa Karaman;P. Khuri;Kang Kim;F. Mastik;T. Moriya;O. Oralkan;Y. Saijo;J. Schaar;P. Serruys;S. Sethuraman;A. Tanaka;H. Vos;Russell S Witte;Matthew O’Donnell - 通讯作者:
Matthew O’Donnell
Russell S Witte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell S Witte', 18)}}的其他基金
4D Transcranial Acoustoelectric Imaging for High Resolution Functional Mapping of Neuronal Currents
4D 经颅声电成像用于神经元电流的高分辨率功能映射
- 批准号:
10266774 - 财政年份:2020
- 资助金额:
$ 68.81万 - 项目类别:
4D Transcranial Acoustoelectric Imaging for High Resolution Functional Mapping of Neuronal Currents
4D 经颅声电成像用于神经元电流的高分辨率功能映射
- 批准号:
10468182 - 财政年份:2020
- 资助金额:
$ 68.81万 - 项目类别:
High resolution electrical brain mapping by real-time and portable 4D Acoustoelectric Imaging
通过实时便携式 4D 声电成像进行高分辨率脑电图绘制
- 批准号:
9036787 - 财政年份:2015
- 资助金额:
$ 68.81万 - 项目类别:
3D Ultrasound Current Source Density Imaging for Treatment of Heart Arrhythmia
3D 超声电流源密度成像治疗心律失常
- 批准号:
7740997 - 财政年份:2009
- 资助金额:
$ 68.81万 - 项目类别:
3D Ultrasound Current Source Density Imaging for Treatment of Heart Arrhythmia
3D 超声电流源密度成像治疗心律失常
- 批准号:
8257070 - 财政年份:2009
- 资助金额:
$ 68.81万 - 项目类别:
3D Ultrasound Current Source Density Imaging for Treatment of Heart Arrhythmia
3D 超声电流源密度成像治疗心律失常
- 批准号:
8053916 - 财政年份:2009
- 资助金额:
$ 68.81万 - 项目类别:
3D Ultrasound Current Source Density Imaging for Treatment of Heart Arrhythmia
3D 超声电流源密度成像治疗心律失常
- 批准号:
7881529 - 财政年份:2009
- 资助金额:
$ 68.81万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 68.81万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 68.81万 - 项目类别:
Discovery Launch Supplement