Computational imaging biomarkers of multiple sclerosis
多发性硬化症的计算成像生物标志物
基本信息
- 批准号:10005502
- 负责人:
- 金额:$ 37.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmericanAtrophicBenchmarkingBiological MarkersBrainCentral Nervous System DiseasesChronicClinicalClinical ResearchClinical TrialsClinical assessmentsCognitive deficitsComputational TechniqueCounselingDataDiseaseDisease ManagementDisease MarkerDisease ProgressionFutureGoalsImageIndividualInflammatoryLabelLesionMRI ScansMagnetic Resonance ImagingManualsMeasurementMeasuresMethodsModelingMorphologyMultiple SclerosisOutcomePatientsPatternPerformancePopulationProceduresProtocols documentationResearchScanningShapesSoftware ToolsSourceStructureTestingTimeTime Studybasebrain morphologycerebral atrophyclinical developmentclinical practiceclinical predictorscomputer studiescomputerized toolsdisabilitydisease diagnosisgray matterhigh riskimaging biomarkerimprovedin vivoindividual patientmorphometrymotor deficitmultiple sclerosis patientneural networkneuroimagingnoveloutcome forecastpredictive modelingprospectivetoolwhite matter
项目摘要
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system that causes significant
cognitive and motor deficits and affects nearly half a million Americans and 2.5 million individuals worldwide. In
vivo MRI can detect the disease’s hallmark white matter lesions and their changes over time with a significantly
higher sensitivity than clinical assessment of disease activity. Furthermore, numerous studies have shown that
the atrophy accrual in various brain structures, assessed from serial MRI, is faster in patients with MS than in
healthy controls, and correlates with measures of disability. Therefore, the ability to reliably and efficiently
characterize the morphometry of white matter lesions, various neuroanatomical structures, and their changes
over time directly from in vivo MRI would be of great potential value for diagnosing disease, tracking
progression, and evaluating treatment.
While many automatic tools for segmenting white matter lesions from MR scans of MS patients have been
developed, these are typically tuned for specific research protocols only, and do not address the problem of
characterizing brain atrophy patterns in MS patients, where the presence of lesions is known to interfere with
atrophy estimation. Furthermore, computational neuroimaging efforts in MS have been focused almost
exclusively on demonstrating statistical associations on population levels, rather than on prediction models that
combine all sources of information simultaneously to compute the most sensitive biomarker in individual
patients.
In order to address these limitations, this project aims to (1) develop and validate automated tools for scanner-
adaptive segmentation of white matter lesions within their neuroanatomical context; (2) develop and deploy
spatially regularized models for predicting disability at the level of the individual patient; and (3) generalize,
validate, and apply the proposed segmentation and prediction tools in longitudinal settings. The successful
completion of this project will result in a set of computational imaging biomarkers in MS that correlate better
with clinical observation than currently available methods; publicly available software tools for robustly
segmenting longitudinal scans of MS patients across a wide range of imaging hardware and protocols; and a
more detailed characterization of the morphological and temporal dynamics underlying disease progression
and accumulation of disability in MS.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Koen Van Leemput其他文献
Koen Van Leemput的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Koen Van Leemput', 18)}}的其他基金
Computational imaging biomarkers of multiple sclerosis
多发性硬化症的计算成像生物标志物
- 批准号:
10431903 - 财政年份:2019
- 资助金额:
$ 37.1万 - 项目类别:
Computational Imaging Biomarkers of Multiple Sclerosis
多发性硬化症的计算成像生物标志物
- 批准号:
10689038 - 财政年份:2019
- 资助金额:
$ 37.1万 - 项目类别:
Computational imaging biomarkers of multiple sclerosis
多发性硬化症的计算成像生物标志物
- 批准号:
10187669 - 财政年份:2019
- 资助金额:
$ 37.1万 - 项目类别:
Computational imaging biomarkers of multiple sclerosis
多发性硬化症的计算成像生物标志物
- 批准号:
9795538 - 财政年份:2019
- 资助金额:
$ 37.1万 - 项目类别:
Automated Segmentation of Subregions of the Medial Temporal Lobe in in vivo MRI
体内 MRI 内侧颞叶子区域的自动分割
- 批准号:
8101752 - 财政年份:2011
- 资助金额:
$ 37.1万 - 项目类别:
Automated Segmentation of Subregions of the Medial Temporal Lobe in in vivo MRI
体内 MRI 内侧颞叶子区域的自动分割
- 批准号:
8268142 - 财政年份:2011
- 资助金额:
$ 37.1万 - 项目类别:
Automated Segmentation of Subregions of the Medial Temporal Lobe in in vivo MRI
体内 MRI 内侧颞叶子区域的自动分割
- 批准号:
8642178 - 财政年份:2011
- 资助金额:
$ 37.1万 - 项目类别:
Automated Segmentation of Subregions of the Medial Temporal Lobe in in vivo MRI
体内 MRI 内侧颞叶子区域的自动分割
- 批准号:
8446307 - 财政年份:2011
- 资助金额:
$ 37.1万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 37.1万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 37.1万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 37.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists