Remodeling of chromatin and transcriptomic landscape to enhance optic nerve regeneration
重塑染色质和转录组景观以增强视神经再生
基本信息
- 批准号:10029812
- 负责人:
- 金额:$ 44.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAffectAxonBioinformaticsBrainCRISPR/Cas technologyCandidate Disease GeneCell MaturationCell SurvivalCellsChIP-seqChromatinChromatin StructureCollaborationsCytoskeletonDataDevelopmentEnvironmentEpigenetic ProcessGene ExpressionGene TargetingGenesGenetic TranscriptionGoalsGrowth FactorIn VitroInjuryKnock-outLeadMolecularMolecular TargetMultiomic DataMusNatural regenerationNeuronsNonmuscle Myosin Type IIAOptic ChiasmOptic NerveOptic Nerve InjuriesPathway interactionsProtocols documentationRNARecovery of FunctionRegulationRetinal Ganglion CellsRoleSiteSpinal cord injurySurvival RateThree-Dimensional ImagingTissuesVisionVisualVisual system structureWorkXCL1 geneagedaxon regenerationbasechromatin remodelingexperimental studygenomic locushistone demethylaseimaging studyin vivoinjuredinnovationmultiple omicsnerve injurynon-muscle myosinnoveloptic nerve regenerationregenerativescreeningtooltranscription factortranscriptome sequencingtranscriptomics
项目摘要
Summary
Long distance axon regeneration is one of the most important aspects and a prerequisite for successful
functional recovery after optic nerve injuries. Although great progress has been made to enhance the
intrinsic axon regeneration ability via various approaches, long distance optic nerve regeneration reaching the
original targets in the brain remains a major challenge. We think that extending sufficient number of injured
RGC axons from different RGC subtypes into the brain should be the major tasks for functional recovery
after visual injuries. Therefore, a new strategy is needed to 1) enhance RGC survival rate, 2) identify
additional gene targets capable of enhance regeneration from a diverse subtypes of RGCs, and 3) promote
extensive long-distance optic nerve regeneration that is less affected by the inhibitory environment. During
RGC maturation, their chromatin structures change temporally, leading to changed transcriptomics
underlying the loss of intrinsic ability to support axon regeneration. Conversely, the current identified genes
that act to enhance optic nerve regeneration presumably alter the developmental changes in transcriptomics in
some way. Thus, it is important to reveal the chromatin and transcriptomics landscape of RGCs favorable
for axon regeneration, and identify key transcription factors and/or chromatin modulators underlying
such chromatin state of regenerating RGCs. In Aim 1, by performing RNA-seq, ATAC-seq and ChIP-seq of
purified RGCs at different maturation stages, and different regenerative states, we will use advanced
integrative bioinformatics analyses to reveal the chromatin and transcriptomics landscape of RGCs favorable
for axon regeneration, and identify key transcription factors and/or chromatin modulators underlying such
chromatin state of regenerating RGCs. In Aim 2, we will perform functional screening experiments to
determine their roles in regulation of RGC survival and/or optic nerve regeneration, and their underlying
mechanisms. Our recent work showed that deleting non-muscle myosin IIA/B or histone demethylase UTX,
when combined with enhanced intrinsic axon regeneration ability, could lead to extensive long-distance optic
nerve regeneration. Based on these results, in Aim 3, we will explore if combining the newly identified
transcription factors with UTX and myosin IIA/B knockout could induce long distance optic nerve regeneration
into the brain. The proposed studies will not only generate a detailed picture of changes in transcriptomics,
chromatin accessibility and epigenetic landscape of RGCs during maturation and regeneration, but also
identify novel molecular targets and optimized approaches to re-establish visual circuity.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fengquan Zhou其他文献
Fengquan Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fengquan Zhou', 18)}}的其他基金
Remodeling of chromatin and transcriptomic landscape to enhance optic nerve regeneration
重塑染色质和转录组景观以增强视神经再生
- 批准号:
10224213 - 财政年份:2020
- 资助金额:
$ 44.81万 - 项目类别:
Reprogramming retinal ganglion cells for optic nerve regeneration and guidance
重新编程视网膜神经节细胞以实现视神经再生和引导
- 批准号:
9381259 - 财政年份:2017
- 资助金额:
$ 44.81万 - 项目类别:
Epigenetic regulation of neuronal morphogenesis in development and regeneration
发育和再生过程中神经元形态发生的表观遗传调控
- 批准号:
8815343 - 财政年份:2014
- 资助金额:
$ 44.81万 - 项目类别:
Epigenetic regulation of neuronal morphogenesis in development and regeneration
发育和再生过程中神经元形态发生的表观遗传调控
- 批准号:
8612848 - 财政年份:2014
- 资助金额:
$ 44.81万 - 项目类别:
Role of CLASP in neuronal morphogenesis during development
CLASP 在发育过程中神经元形态发生中的作用
- 批准号:
7735703 - 财政年份:2009
- 资助金额:
$ 44.81万 - 项目类别:
Role of CLASP in neuronal morphogenesis during development
CLASP 在发育过程中神经元形态发生中的作用
- 批准号:
8321390 - 财政年份:2009
- 资助金额:
$ 44.81万 - 项目类别:
Role of CLASP in neuronal morphogenesis during development
CLASP 在发育过程中神经元形态发生中的作用
- 批准号:
8131828 - 财政年份:2009
- 资助金额:
$ 44.81万 - 项目类别:
Role of CLASP in neuronal morphogenesis during development
CLASP 在发育过程中神经元形态发生中的作用
- 批准号:
8533033 - 财政年份:2009
- 资助金额:
$ 44.81万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 44.81万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 44.81万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 44.81万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 44.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 44.81万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 44.81万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 44.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists