Machine learning to inform health services and policy for traumatic brain injury

机器学习为创伤性脑损伤的医疗服务和政策提供信息

基本信息

  • 批准号:
    10030705
  • 负责人:
  • 金额:
    $ 18.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

Project Summary Traumatic brain injury (TBI) is recognized as the leading cause of death and disability in all parts of the world and costs the international economy approximately US$400 billion annually, which, given an estimated standardized gross world product of US $73.7 trillion, is a striking 0.5% of the entire annual global output. To address the profound issues related to a drastic increase in emergency department visits and hospitalizations for TBI over the past decades, the United States Congress highlighted injury surveillance as a federal priority. The Centers for Disease Control and Prevention defines surveillance as “use of health-related data that precede diagnosis and signal a sufficient probability of a case or an outbreak to warrant further public health response”. To prevent TBI, it is essential to understand its distribution and patterns, in addition to having strong knowledge of clinical disorders, characteristic, or other definable entity, that differentiates TBI from other clinical populations. A critical barrier to the progress of the NIH-funded program “Comorbidity in traumatic brain injury and risk of all-cause mortality, functional and financial burden: a decade-long population based cohort study” was the presence of complex and multifaceted comorbidities in a patient with TBI before and at the time of the injury, and their links to patients’ frailty, injury circumstances, severity, and outcomes. This resulted in a shift in the research paradigm, and development of a novel data mining approach used in genomics to sequence more than 70,000 clinical diagnosis codes in a TBI population, and compare them to a matched population. The developed data mining approach allowed not only the validation of previously known risk factors of TBI, but also the identification of associations previously unknown, without any preconceived human biases. This project will continue advancement of a non-hypothesis driven scientific approach, which will: (1) Characterize patients with TBI at three different time periods in relation to the TBI event – before, at the time of, and after the injury; (2) Develop individual and population level models to study the transitions between the different time states; and (3) Construct and validate predictive models of susceptibility to TBI events, adverse outcomes, and high healthcare resource use at the individual and population level. Decades- long population-based health administrative data from the publicly-funded healthcare system in Ontario, Canada is ready to be further analysed for clinical and technological advancement, to support human thinking in categorizing personal, clinical, and environmental exposure data preceding TBI.
项目概要 创伤性脑损伤 (TBI) 被认为是世界各地死亡和残疾的主要原因 国际经济每年约 4000 亿美元,根据估计的标准化世界总量 产值 73.7 万亿美元,占全球年总产值的 0.5%,令人震惊。解决相关深刻问题 过去几十年来,因 TBI 导致急诊就诊和住院的人数急剧增加,美国 州议会强调伤害监测是联邦的优先事项。疾病控制和预防中心 将监测定义为“在诊断之前使用与健康相关的数据,并表明病例或病例有足够的可能性” 爆发,需要采取进一步的公共卫生应对措施”。为了预防 TBI,必须了解其分布和情况 模式,除了对临床疾病、特征或其他可定义实体有深入的了解之外, TBI 与其他临床人群不同。 NIH 资助项目进展的一个关键障碍 “创伤性脑损伤的合并症以及全因死亡、功能和经济负担的风险:长达十年的 基于人群的队列研究”是 TBI 患者存在复杂且多方面的合并症 受伤前和受伤时,以及它们与患者的虚弱程度、受伤情况、严重程度和结果的联系。这 导致了研究范式的转变,并开发了一种用于基因组学的新型数据挖掘方法 对 TBI 人群中 70,000 多个临床诊断代码进行测序,并将其与匹配人群进行比较。 开发的数据挖掘方法不仅可以验证先前已知的 TBI 风险因素,还可以验证 识别以前未知的关联,没有任何先入为主的人类偏见。该项目将继续进行 推进非假设驱动的科学方法,该方法将:(1)在三个阶段描述 TBI 患者的特征 与 TBI 事件相关的不同时间段——受伤前、受伤时和受伤后; (2) 发展个人 和人口水平模型来研究不同时间状态之间的转变; (3)构建并验证 predictive models of susceptibility to TBI events, adverse outcomes, and high healthcare resource use at the individual 和人口水平。来自公共资助的医疗保健机构长达数十年的基于人口的健康管理数据 加拿大安大略省的系统已准备好进一步分析临床和技术进步,以支持人类 对 TBI 之前的个人、临床和环境暴露数据进行分类的思考。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Angela Colantonio其他文献

Angela Colantonio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Angela Colantonio', 18)}}的其他基金

Machine learning to inform health services and policy for traumatic brain injury
机器学习为创伤性脑损伤的医疗服务和政策提供信息
  • 批准号:
    10223453
  • 财政年份:
    2020
  • 资助金额:
    $ 18.59万
  • 项目类别:
Comorbidity in traumatic brain injury and risk of all-cause mortality, functional and financial burden: a decade-long population based cohort study
创伤性脑损伤的合并症以及全因死亡率、功能和经济负担的风险:一项长达十年的基于人群的队列研究
  • 批准号:
    9352700
  • 财政年份:
    2016
  • 资助金额:
    $ 18.59万
  • 项目类别:
Comorbidity in traumatic brain injury and risk of all-cause mortality, functional and financial burden: a decade-long population based cohort study
创伤性脑损伤的合并症以及全因死亡率、功能和经济负担的风险:一项长达十年的基于人群的队列研究
  • 批准号:
    9173336
  • 财政年份:
    2016
  • 资助金额:
    $ 18.59万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.59万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了