Cortical mechanisms of stress-induced cognitive impairment
压力引起的认知障碍的皮质机制
基本信息
- 批准号:10030148
- 负责人:
- 金额:$ 50.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acoustic StimulationAction PotentialsAcuteAddressAffectAnteriorAreaAttentionAuditoryAxonBehaviorBehavioralBlindnessBrainBrain regionCalciumCellsCharacteristicsChronic stressCognitionColorDataDecision MakingDevelopmentDiscriminationEconomicsElementsEnvironmentExcitatory SynapseExposure toFutureGuidelinesHealth Care CostsHumanImageImpaired cognitionImpairmentInterventionKnowledgeLife ExpectancyLinkMeasuresMediatingMemoryMental HealthModalityMusNational Institute of Mental HealthNeocortexNeuronsOutputParietalParietal LobePhysical RestraintPlayPovertyPrevention strategyPreventive InterventionProductivityPublishingPyramidal CellsResearchRiskRoleSensorySignal Detection AnalysisSliceStimulusStreamStressSynapsesSystemTestingVisualWararea striatabasebehavior testcingulate cortexcognitive functioncognitive performancedesigndesigner receptors exclusively activated by designer drugsdisabilityexperimental studyin vivo calcium imagingin vivo two-photon imaginginnovationinsightmultimodalityneuropsychiatric disordernovelnovel strategiesoperationoptogeneticsoutcome predictionpatch clamppreservationresponsesensory discriminationsensory inputsensory integrationstress related disorderstressortherapy developmenttwo-photonvisual stimulus
项目摘要
PROJECT SUMMARY / ABSTRACT
Stress profoundly impacts mental health via impaired cognitive function and increased risk of neuropsychiatric
disorders, resulting in loss of lives, tremendous healthcare costs and reduced economic productivity. Central to
the mechanism of stress-induced cognitive impairment is loss of excitatory synapses and consequently,
disrupted connectivity of key brain areas, including those involved in decision-making. Decisions rely on this
connectivity to combine sensory clues with internal factors like attention, memories and outcome predictions. In
the neocortex, sensory information is provided by bottom-up inputs while internal factors are conveyed via top-
down systems. The capacity of the posterior parietal cortex (PPC) to integrate these various information
streams is fundamental to decision-making. There is emerging evidence from human studies that the parietal
circuit is affected by chronic stress. Yet, there is a critical gap in our knowledge regarding the mechanistic
role the PPC circuit may play in mediating the link between stress and impaired decision-making.
Our preliminary findings indicate that repeated exposure to multiple concurrent stressors (combining physical,
visual and auditory stresses, RMS for short) destroys excitatory synapses in the PPC. Specifically, synaptic
inputs corresponding to the sensory modalities (visual and auditory) conveying the stress are lost while top-
down inputs from frontal brain regions are preserved. These findings motivate our central hypothesis that
stress impedes decision-making by disrupting the integration of sensory and top-down information
streams in the PPC circuit. We will test this hypothesis at the behavioral, circuit and synaptic level. First,
utilizing quantitative behavioral analysis, we will determine which aspects of decision-making are affected by
RMS. We will use chemogenetic circuit manipulation (DREADDs) to link our behavioral findings to sensory and
top-down inputs of the PPC. Next, we will use in vivo two-photon calcium imaging and signal detection theory
to directly test the effect of RMS on information transfer between cortical regions. Finally, we will use dual-color
optogenetics and whole-cell patch clamp recordings in acute brain slices to determine the effect of RMS on the
integration of sensory and top-down synaptic inputs in PPC neurons. Successful completion of the proposed
studies will establish an important mechanistic link between the PPC circuit and stress-induced deficits in
decision-making. The generated insights will pave the way towards identifying novel targets for prevention and
intervention strategies to address stress-related neuropsychiatric disorders.
项目摘要/摘要
压力通过认知功能受损和神经精神疾病风险增加而深刻影响心理健康
疾病,导致生命损失、巨大的医疗费用和降低的经济生产力。中心到
应激诱导的认知损害的机制是兴奋性突触的丧失,因此,
大脑关键区域的连接中断,包括参与决策的区域。决策有赖于此
将感觉线索与注意力、记忆和结果预测等内部因素相结合的连接性。在……里面
大脑皮层的感觉信息是由自下而上的输入提供的,而内部因素是通过自上而下的输入传递的。
系统出现故障。后顶叶皮质(PPC)整合这些信息的能力
STREAMS是决策的基础。有来自人类研究的新证据表明,顶叶
电路受到慢性应激的影响。然而,我们对机械论的认识存在着严重的差距。
PPC回路可能在调节压力和决策受损之间的联系方面发挥作用。
我们的初步发现表明,反复暴露于多种同时存在的应激源(结合身体上的、
视觉和听觉应激(简称RMS)破坏PPC中的兴奋性突触。具体地说,突触
与传达压力的感觉模式(视觉和听觉)相对应的输入丢失,而顶部-
来自额叶脑区的向下输入被保留下来。这些发现支持了我们的中心假设
压力通过破坏感觉和自上而下信息的整合来阻碍决策
PPC电路中的数据流。我们将在行为、回路和突触水平上检验这一假说。第一,
利用定量行为分析,我们将确定决策的哪些方面受到
均方根。我们将使用化学发生回路操作(DREADD)将我们的行为发现与感觉和
PPC的自上而下输入。接下来,我们将利用体内双光子钙成像和信号检测理论
直接测试RMS对大脑皮层区域间信息传递的影响。最后,我们将使用双色
急性脑片的光遗传学和全细胞膜片钳记录以确定RMS对
PPC神经元中感觉和自上而下的突触输入的整合。圆满完成拟议中的
研究将在PPC回路和应激诱导的缺陷之间建立一个重要的机制联系
决策。产生的见解将为确定新的预防和预防目标铺平道路。
应对应激相关神经精神障碍的干预策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gyorgy Lur其他文献
Gyorgy Lur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gyorgy Lur', 18)}}的其他基金
Feedforward-feedback integration in the posterior parietal cortex
后顶叶皮层的前馈-反馈整合
- 批准号:
10654017 - 财政年份:2022
- 资助金额:
$ 50.94万 - 项目类别:
Feedforward-feedback integration in the posterior parietal cortex
后顶叶皮层的前馈-反馈整合
- 批准号:
10493902 - 财政年份:2022
- 资助金额:
$ 50.94万 - 项目类别:
Cortical mechanisms of stress-induced cognitive impairment
压力引起的认知障碍的皮质机制
- 批准号:
10615723 - 财政年份:2020
- 资助金额:
$ 50.94万 - 项目类别:
Cortical mechanisms of stress-induced cognitive impairment
压力引起的认知障碍的皮质机制
- 批准号:
10381350 - 财政年份:2020
- 资助金额:
$ 50.94万 - 项目类别:
Cortical mechanisms of stress-induced cognitive impairment
应激性认知障碍的皮质机制
- 批准号:
10192842 - 财政年份:2020
- 资助金额:
$ 50.94万 - 项目类别:
Cortical mechanisms of stress-induced cognitive impairment
压力引起的认知障碍的皮质机制
- 批准号:
10396615 - 财政年份:2020
- 资助金额:
$ 50.94万 - 项目类别:
Reorganization of the Central Visual System by Inhibitory Neuron Transplantation
通过抑制性神经元移植重组中枢视觉系统
- 批准号:
10612066 - 财政年份:2019
- 资助金额:
$ 50.94万 - 项目类别:
Reorganization of the Central Visual System by Inhibitory Neuron Transplantation
通过抑制性神经元移植重组中枢视觉系统
- 批准号:
10455415 - 财政年份:2019
- 资助金额:
$ 50.94万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 50.94万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 50.94万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 50.94万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 50.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 50.94万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 50.94万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 50.94万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 50.94万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 50.94万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 50.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




