Towards a National Diagnostic Excellence Dashboard - Partnering with Stakeholders to Construct Evidence-Based Operational Measures of Misdiagnosis-Related Harms

迈向国家卓越诊断仪表板 - 与利益相关者合作,构建基于证据的误诊相关危害的操作措施

基本信息

  • 批准号:
    10033081
  • 负责人:
  • 金额:
    $ 37.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary (Abstract) This four-year project combines the assets of a leading academic medical center (Johns Hopkins Medicine) with those of a recognized international leader in diagnostic excellence (Society to Improve Diagnosis in Medicine [SIDM]) and a major physician specialty society (American College of Emergency Physicians [ACEP]) to break new ground in operational measurement of patient harms linked to diagnostic error. To achieve the goal of improved patient outcomes through diagnostic excellence, it is essential to be able to measure diagnostic performance. Diagnostic errors are the largest cause of preventable harms in US medical care, affecting an estimated 12 million people each year, causing permanent disability or death in at least 0.5 million. Diagnostic safety is a priority research area for AHRQ and the National Academy of Medicine (NAM). A key impediment to “moving the needle” on reducing harms from diagnostic error is the lack of measures that matter to both patients and clinicians, yet can be fully operationalized (i.e., routinely monitored in the existing workflow). Impactful diagnostic outcome measures would assess serious morbidity and mortality in clinical contexts where diagnostic errors are known to occur. Ideal measures would be specific, valid, precise, and comparable across institutions to facilitate benchmarking that identifies both low and high outlier performers. This proposal uses a novel approach to constructing evidence-based diagnostic outcome measures with readily-available administrative and claims data sets. The Symptom-disease Pair Analysis of Diagnostic Error (“SPADE”) method first identifies a clinically-plausible relationship between a common presenting symptom and a dangerous underlying disease (e.g., chest pain-heart attack, fever-sepsis, dizziness-stroke). It then searches for a statistically-valid pattern of unexpected adverse events (e.g., observed greater than expected short-term inpatient hospitalization following a treat-and-release emergency department [ED] visit). Once such patterns are confirmed, they can be monitored to assess the impact of interventions to improve diagnosis. This proposal seeks to mature a partially-developed SPADE measure (for dizziness-stroke, a frequent cause of serious misdiagnosis-related harms) to the point of readiness for use in national benchmarking of hospital-level diagnostic performance for quality improvement. This SPADE pair has been validated through detailed chart review and statistical testing using data from four Johns Hopkins hospitals, and the National Quality Forum (NQF) has named this measure as a top priority for immediate development. This project will advance the measure towards broad adoption with two Specific Aims: (1) engage key national stakeholders to optimize attributes of the missed stroke measure (via expert panel and emergency physician survey) and (2) measure diagnostic performance of US hospital EDs using the refined missed stroke measure (via Medicare data analysis). These Aims will address stroke misdiagnosis now and, also, yield generalizable scientific insights. This will streamline future development of new measures of harm for other important symptom-disease pairs.
项目概要(摘要) 这个为期四年的项目结合了领先的学术医疗中心(约翰霍普金斯大学医学院)的资产 与公认的卓越诊断国际领导者(Society to Improve Diagnosis in 医学 [SIDM])和主要医师专业协会(美国急诊医师学会 [ACEP])在与诊断错误相关的患者伤害的操作测量方面开辟了新天地。 为了通过卓越的诊断来实现改善患者治疗结果的目标,必须能够 测量诊断性能。诊断错误是美国医疗领域可预防伤害的最大原因 护理,每年影响估计 1200 万人,导致至少 0.5 年内永久残疾或死亡 百万。诊断安全是 AHRQ 和美国国家医学院 (NAM) 的优先研究领域。 在减少诊断错误造成的危害方面“取得进展”的一个主要障碍是缺乏措施 对患者和临床医生都很重要,但可以完全实施(即,在现有的 工作流程)。有影响力的诊断结果措施将评估临床中的严重发病率和死亡率 已知发生诊断错误的上下文。理想的措施应该是具体的、有效的、精确的和 跨机构进行比较,以促进确定低绩效和高绩效异常者的基准测试。 该提案采用了一种新颖的方法来构建基于证据的诊断结果测量 随时可用的管理和索赔数据集。诊断错误的症状-疾病对分析 (“SPADE”)方法首先确定常见症状之间的临床合理关系 以及危险的潜在疾病(例如胸痛-心脏病、发烧-败血症、头晕-中风)。那么它 搜索意外不良事件的统计有效模式(例如,观察到的事件大于预期 治疗后出院急诊科 [ED] 就诊后的短期住院治疗)。一旦这样 模式得到确认后,可以对其进行监测,以评估干预措施的影响,从而改善诊断。 该提案旨在使部分开发的 SPADE 措施成熟(针对头晕中风,这是导致中风的常见原因) 严重的误诊相关危害),足以用于国家医院水平基准测试 诊断性能以提高质量。此 SPADE 对已通过详细图表验证 使用来自四家约翰霍普金斯大学医院和国家质量论坛的数据进行审查和统计测试 (NQF) 已将此措施列为当前发展的首要任务。该项目将推进 广泛采用的措施有两个具体目标:(1) 让主要国家利益相关者参与优化 错过的中风测量的属性(通过专家小组和急诊医生调查)和(2)测量 美国医院急诊室使用完善的漏诊中风测量方法进行诊断的表现(来自医疗保险数据) 分析)。这些目标现在将解决中风误诊问题,并产生可推广的科学见解。 这将简化未来针对其他重要症状-疾病对的危害新措施的开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID NEWMAN-TOKER其他文献

DAVID NEWMAN-TOKER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID NEWMAN-TOKER', 18)}}的其他基金

Towards a National Diagnostic Excellence Dashboard - Partnering with Stakeholders to Construct Evidence-Based Operational Measures of Misdiagnosis-Related Harms
迈向国家卓越诊断仪表板 - 与利益相关者合作,构建基于证据的误诊相关危害的操作措施
  • 批准号:
    10201710
  • 财政年份:
    2020
  • 资助金额:
    $ 37.25万
  • 项目类别:
Towards a National Diagnostic Excellence Dashboard - Partnering with Stakeholders to Construct Evidence-Based Operational Measures of Misdiagnosis-Related Harms
迈向国家卓越诊断仪表板 - 与利益相关者合作,构建基于证据的误诊相关危害的操作措施
  • 批准号:
    10613492
  • 财政年份:
    2020
  • 资助金额:
    $ 37.25万
  • 项目类别:
Towards a National Diagnostic Excellence Dashboard - Partnering with Stakeholders to Construct Evidence-Based Operational Measures of Misdiagnosis-Related Harms
迈向国家卓越诊断仪表板 - 与利益相关者合作,构建基于证据的误诊相关危害的操作措施
  • 批准号:
    10388199
  • 财政年份:
    2020
  • 资助金额:
    $ 37.25万
  • 项目类别:
AVERT_Acute Video-oculography for Vertigo in Emergency Rooms for Rapid Triage
AVERT_急诊室眩晕的急性视频眼科检查以进行快速分类
  • 批准号:
    8928136
  • 财政年份:
    2014
  • 资助金额:
    $ 37.25万
  • 项目类别:
AVERT_Acute Video-oculography for Vertigo in Emergency Rooms for Rapid Triage
AVERT_急诊室眩晕的急性视频眼科检查以进行快速分类
  • 批准号:
    9336297
  • 财政年份:
    2014
  • 资助金额:
    $ 37.25万
  • 项目类别:
A Multiyear Grant to Support the Diagnostic Error in Medicine (DEM) Annual Confer
支持医学诊断错误 (DEM) 年度会议的多年补助金
  • 批准号:
    8006320
  • 财政年份:
    2010
  • 资助金额:
    $ 37.25万
  • 项目类别:
A Multiyear Grant to Support the Diagnostic Error in Medicine (DEM) Annual Confer
支持医学诊断错误 (DEM) 年度会议的多年补助金
  • 批准号:
    8308958
  • 财政年份:
    2010
  • 资助金额:
    $ 37.25万
  • 项目类别:
A Multiyear Grant to Support the Diagnostic Error in Medicine (DEM) Annual Confer
支持医学诊断错误 (DEM) 年度会议的多年补助金
  • 批准号:
    8150456
  • 财政年份:
    2010
  • 资助金额:
    $ 37.25万
  • 项目类别:
Building a New Model for Diagnosis of ED Dizzy Patients
建立 ED 眩晕患者诊断新模型
  • 批准号:
    6508172
  • 财政年份:
    2002
  • 资助金额:
    $ 37.25万
  • 项目类别:
Building a New Model for Diagnosis of ED Dizzy Patients
建立 ED 眩晕患者诊断新模型
  • 批准号:
    7178446
  • 财政年份:
    2002
  • 资助金额:
    $ 37.25万
  • 项目类别:

相似海外基金

Patient-Reported Diagnostic Safety Events in Ambulatory Care Settings: A National Survey of Systemic Influences, Disparities and Persisting Consequences
门诊医疗机构中患者报告的诊断安全事件:系统性影响、差异和持续后果的全国调查
  • 批准号:
    10830011
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
COVID-19 National DiagnOstic Research and Evaluation Platform (CONDOR)
COVID-19 国家诊断研究和评估平台 (CONDOR)
  • 批准号:
    MC_PC_20008
  • 财政年份:
    2020
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Intramural
Towards a National Diagnostic Excellence Dashboard - Partnering with Stakeholders to Construct Evidence-Based Operational Measures of Misdiagnosis-Related Harms
迈向国家卓越诊断仪表板 - 与利益相关者合作,构建基于证据的误诊相关危害的操作措施
  • 批准号:
    10201710
  • 财政年份:
    2020
  • 资助金额:
    $ 37.25万
  • 项目类别:
Enhancing National Covid-19 Screening and Diagnostic Support Capacity in Uganda
加强乌干达国家 Covid-19 筛查和诊断支持能力
  • 批准号:
    MC_PC_20001
  • 财政年份:
    2020
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Intramural
Towards a National Diagnostic Excellence Dashboard - Partnering with Stakeholders to Construct Evidence-Based Operational Measures of Misdiagnosis-Related Harms
迈向国家卓越诊断仪表板 - 与利益相关者合作,构建基于证据的误诊相关危害的操作措施
  • 批准号:
    10613492
  • 财政年份:
    2020
  • 资助金额:
    $ 37.25万
  • 项目类别:
Towards a National Diagnostic Excellence Dashboard - Partnering with Stakeholders to Construct Evidence-Based Operational Measures of Misdiagnosis-Related Harms
迈向国家卓越诊断仪表板 - 与利益相关者合作,构建基于证据的误诊相关危害的操作措施
  • 批准号:
    10388199
  • 财政年份:
    2020
  • 资助金额:
    $ 37.25万
  • 项目类别:
Enhancing National COVID-19 Diagnostic Support Capacity in Uganda
加强乌干达国家 COVID-19 诊断支持能力
  • 批准号:
    MC_PC_19062
  • 财政年份:
    2020
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Intramural
Strengthening veterinary diagnostic laboratory effort as related to the national food safety system
加强与国家食品安全体系相关的兽医诊断实验室工作
  • 批准号:
    9472229
  • 财政年份:
    2017
  • 资助金额:
    $ 37.25万
  • 项目类别:
Strengthening veterinary diagnostic laboratory effort as related to the national food safety system
加强与国家食品安全体系相关的兽医诊断实验室工作
  • 批准号:
    10192504
  • 财政年份:
    2017
  • 资助金额:
    $ 37.25万
  • 项目类别:
A Laboratory Information Management System -LIMS- for the optimal administration of data generated by the National Bee Diagnostic Centre - Technology Access Centre
实验室信息管理系统 -LIMS- 用于对国家蜜蜂诊断中心 - 技术访问中心生成的数据进行最佳管理
  • 批准号:
    505192-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Applied Research Tools and Instruments Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了