Macromolecular Conformational Heterogeneity
大分子构象异质性
基本信息
- 批准号:10008201
- 负责人:
- 金额:$ 10.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AmazeAntibiotic ResistanceAreaAtmosphereBacterial Antibiotic ResistanceBacterial InfectionsBase Excision RepairsBiologicalBiological ProcessCarbohydratesChargeCommunitiesDNADNA glycosylaseDevelopmentDiseaseEnvironmentExhibitsFreedomHeterogeneityImmunotherapyIndividualInfectionInvestigationIonsKlebsiella pneumonia bacteriumLaboratoriesMalignant NeoplasmsMetalsMethodsModelingMolecular ConformationNucleic AcidsOligonucleotidesPharmaceutical PreparationsPolysaccharidesPropertyProteinsPseudomonasRNAResearchSamplingSpecificityStructureSystemTherapeuticVaccine AntigenVaccinesWorkbasecancer immunotherapydrug developmentimprovedmacromoleculemethod developmentmolecular dynamicsnovelnovel therapeuticspathogenic bacteriaprogramspublic health relevancesmall molecule therapeuticssolutetool
项目摘要
Project Summary
Biological macromolecules exhibit an amazing degree of conformational heterogeneity as required for their
various functions. The importance of this heterogeneity is becoming more evident as different biological
functions associated with various conformational states of individual biological molecules are identified. To
investigate the conformational properties of macromolecules and facilitate the use of the information in drug
development, our laboratory has focused on a comprehensive research program that optimizes and extends
empirical force fields for biological and drug-like molecules, develops novel conformational and solute
sampling methods and applies those tools in collaborative studies on systems of therapeutic relevance. In the
proposed studies we will further optimize and extend both the additive (fixed-charge) CHARMM and
polarizable classical Drude oscillator force fields. Work on the Drude force field will involve extensions to
cover the full range of biological macromolecules and organic, drug-like molecules, continue to improve the
overall accuracy of the model, extend the model to more accurately treat ligated metals via the inclusion of local
charge transfer effects and implement improved methods for the treatment of van der Waals interactions.
Sampling methods development will extend the Hamiltonian Replica Exchange approach to enhance sampling
in oligonucleotides and polysaccharides including improved sampling of specific degrees of freedom associated
with high-energy barriers using biasing potentials. The solute sampling method developed in our laboratory
based on the oscillating μex Grand-Canonical Monte Carlo/Molecular Dynamics method will be extended to
more accurately sample the distribution of osmolytes and ions, including Mg+2, around macromolecules and
allow the approach to be used with the polarizable Drude force field. In combination, the conformational and
solute sampling approaches represent powerful methods that will allow for theoretical investigations of the
interplay between environment and macromolecular conformational heterogeneity. The developed tools will be
applied in studies on nucleic acids investigating the ionic atmosphere of DNA, exploiting solvachromatic shifts
determined using QM/MM methods, the impact of Mg+2 on the conformational heterogeneity of RNA,
including on riboswtiches and small regulatory RNAs in bacterial pathogens, and the catalytic and base
specificity mechanisms of DNA glycosylases important for base excision repair. In the area of polysaccharides,
the conformational heterogeneity of glycans acting as antigens for vaccines targeting antibiotic resistant
bacteria and for use in cancer immunotherapy will be investigated. Specific disease states to be targeted include
antibiotic resistant infections associated with Klebsiella Pneumonia and Pseudomonas Aeruginsa and cancers
accessible to immunotherapy treatment. In addition, these collaborative efforts will further validate the
developed force fields and methods, tools that are available to and widely used by the scientific community.
项目摘要
生物大分子表现出惊人程度的构象异质性,这是其生物学特性所需的。
各种功能。这种异质性的重要性正变得越来越明显,
鉴定了与各个生物分子的各种构象状态相关的功能。到
研究大分子的构象性质,促进药物信息的使用
发展,我们的实验室专注于一个全面的研究计划,优化和扩展
生物和药物类分子的经验力场,开发新的构象和溶质
采样方法,并将这些工具应用于治疗相关性系统的合作研究。在
建议的研究,我们将进一步优化和扩展添加剂(固定电荷)CHARMM和
可极化的经典德鲁德振子力场关于德鲁德力场的工作将涉及扩大
涵盖生物大分子和有机、类药物分子的全系列,不断完善
模型的整体准确性,通过包含局部
电荷转移效应,并实施用于处理货车德瓦尔斯相互作用的改进方法。
采样方法的开发将扩展哈密尔顿矩阵交换方法,以增强采样
在寡核苷酸和多糖中,
具有使用偏置电势的高能量势垒。本实验室开发的溶质取样方法
基于振荡μex巨正则蒙特卡罗/分子动力学方法将扩展到
更准确地采样渗透压物质和离子(包括Mg+2)在大分子周围的分布,
允许该方法用于可极化的德鲁德力场。在组合中,构象和
溶质采样方法代表了强大的方法,将允许理论研究的
环境和大分子构象异质性之间相互作用。开发的工具将是
应用于核酸研究,研究DNA的离子气氛,利用溶剂变色位移
使用QM/MM方法确定,Mg+2对RNA构象异质性的影响,
包括细菌病原体中的核糖核酸和小的调节RNA,以及细菌病原体中的催化和碱基
DNA糖基化酶对碱基切除修复的特异性机制。在多糖领域,
用作靶向抗生素抗性疫苗的抗原的聚糖的构象异质性
细菌和用于癌症免疫治疗将被研究。要针对的具体疾病状态包括
与肺炎克雷伯菌和铜绿假单胞菌和癌症相关的抗生素耐药感染
接受免疫治疗。此外,这些合作努力将进一步验证
开发了力场和方法,科学界可以使用并广泛使用的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXANDER D MACKERELL其他文献
ALEXANDER D MACKERELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXANDER D MACKERELL', 18)}}的其他基金
Pre-computed free energy maps for rapid structure-based ligand design
预先计算的自由能图,用于快速基于结构的配体设计
- 批准号:
8832859 - 财政年份:2015
- 资助金额:
$ 10.53万 - 项目类别:
ATOMIC DETAIL INVESTIGATIONS OF THE STRUCTURAL AND DYNAMIC PROPERTIES OF BIOLOG
生物结构和动态特性的原子细节研究
- 批准号:
8364242 - 财政年份:2011
- 资助金额:
$ 10.53万 - 项目类别:
ATOMIC DETAIL INVESTIGATIONS OF THE STRUCTURAL AND DYNAMIC PROPERTIES OF BIOLOG
生物结构和动态特性的原子细节研究
- 批准号:
8171820 - 财政年份:2010
- 资助金额:
$ 10.53万 - 项目类别:
Energetics of oligonucleotide conformational heterogeneity
寡核苷酸构象异质性的能量学
- 批准号:
7936632 - 财政年份:2009
- 资助金额:
$ 10.53万 - 项目类别:
ATOMIC DETAIL INVESTIGATIONS OF THE STRUCTURAL AND DYNAMIC PROPERTIES OF BIOLOG
生物结构和动态特性的原子细节研究
- 批准号:
7956073 - 财政年份:2009
- 资助金额:
$ 10.53万 - 项目类别:
ATOMIC DETAIL INVESTIGATIONS OF THE STRUCTURAL AND DYNAMIC PROPERTIES OF BIOLOG
生物结构和动态特性的原子细节研究
- 批准号:
7723113 - 财政年份:2008
- 资助金额:
$ 10.53万 - 项目类别:
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 10.53万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 10.53万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 10.53万 - 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 10.53万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 10.53万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 10.53万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 10.53万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 10.53万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 10.53万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 10.53万 - 项目类别: