Cell targeting with synthetic sense-and-respond protease circuits
使用合成的感知和响应蛋白酶电路进行细胞靶向
基本信息
- 批准号:10037517
- 负责人:
- 金额:$ 60.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsBiological AssayCancer cell lineCell Culture TechniquesCell DeathCell modelCellsDNADevicesDiseaseDosage Compensation (Genetics)EngineeringEnsureFoundationsFutureGene DosageGenomeHepatocyteLogicMalignant Epithelial CellMalignant NeoplasmsMessenger RNAModelingModificationNormal CellOncogenicPI3K/AKTPathway interactionsPeptide HydrolasesPlayPopulationPrimary carcinoma of the liver cellsProcessProtein Binding DomainProtein EngineeringProteinsReporterResearchRoleSignal TransductionSpecificitySystemTertiary Protein StructureTestingTherapeuticTranscriptVariantViralWorkbasecancer cellcell killingcell typecellular engineeringcombinatorialdesigndesign and constructiondosageexperimental studyflexibilityhepatocellular carcinoma cell lineinteinlipid nanoparticlemRNA deliverymathematical modelnanobodiesneoplastic celloperationprogramsprotein expressionras Oncogenereconstitutionresponsesensorsignal processingsynthetic biologysynthetic protein
项目摘要
Cell targeting with synthetic sense-and-respond protease circuits
Abstract
A fundamental challenge in biomedicine is developing therapeutics that can target specific cell populations.
Synthetic protein circuits, based on engineered proteins that interact with one another and with endogenous
cellular pathways, could provide a powerful platform to address this challenge. These circuits could directly
sense key cellular pathways, process that information to classify the cellular state, and respond by
conditionally triggering cell death or other beneficial responses. Synthetic protein circuits could also be
encoded as mRNA and delivered transiently to avoid genome modification. We recently showed that viral
proteases could be engineered to regulate one another in a modular way, allowing construction of diverse
protein-level functions from a limited number of components. However, key challenges remain: Can
engineered protease circuits be generalized to sense multiple cancer pathways with minimal perturbations to
the cell? Can they implement a broader set of signal processing capabilities, including thresholding,
integration, and dosage compensation to allow for versatile and precise function in diverse cell contexts? And,
can they selectively target cancer cells when transiently delivered as mRNA? Here, we aim to develop this
system into a broader platform for targeting cancer cells by creating new pathway sensing capabilities,
designing flexible signal processing modules, and demonstrating the ability to sense and kill specific target cell
types. We will focus on cellular models of hepatocellular carcinoma (HCC), a disease which remains
challenging to treat but is relatively permissive for mRNA delivery. In Aim 1, we will design and validate
protease sensors of major oncogenic pathways that play critical roles in HCC. These sensors conditionally
activate viral proteases in response to the localization, clustering, activity, or abundance of target proteins. In
Aim 2, we will create protease-based circuit modules that actively process these signals. We will engineer
thresholding modules to suppress undesired responses to basal pathway activities in normal cells, and
combinatorial logic modules to allow AND-like integration of signals from distinct sensors. In addition, we will
design dosage compensation modules that make protein expression insensitive to circuit delivery, In Aim 3, we
will design mRNA-delivered circuits that selectively kill HCC cell lines with minimal impact on normal
hepatocytes. This research program will establish the end-to-end feasibility of mRNA-delivered protease
circuits and provide the foundations for future programmable circuit-based therapeutics.
用合成的感测-应答蛋白酶电路靶向细胞
摘要
生物医学的一个基本挑战是开发可以靶向特定细胞群的治疗方法。
合成蛋白质电路,基于工程蛋白质,相互作用,并与内源性
细胞通路,可以提供一个强大的平台来应对这一挑战。这些电路可以直接
感知关键的细胞通路,处理这些信息以分类细胞状态,并通过以下方式做出反应:
有条件地触发细胞死亡或其他有益反应。合成蛋白质电路也可能是
编码为mRNA并瞬时递送以避免基因组修饰。我们最近发现,
蛋白酶可以被设计成以模块化的方式相互调节,从而允许构建不同的蛋白酶。
蛋白质水平的功能来自有限数量的组分。然而,关键的挑战仍然存在:
工程化的蛋白酶电路可以被推广到以最小的扰动感测多种癌症途径,
细胞呢?它们能否实现更广泛的信号处理功能,包括阈值处理,
整合和剂量补偿,以允许在不同的细胞环境中的多功能和精确的功能?而且,
当它们以mRNA的形式瞬时传递时,是否可以选择性地靶向癌细胞?在这里,我们的目标是开发这个
通过创造新的通路传感能力,
设计灵活的信号处理模块,并展示检测和杀死特定靶细胞的能力
类型我们将重点关注肝细胞癌(HCC)的细胞模型,
治疗具有挑战性,但相对允许mRNA递送。在目标1中,我们将设计和验证
主要致癌途径的蛋白酶传感器在HCC中发挥关键作用。这些传感器有条件地
响应于靶蛋白的定位、聚集、活性或丰度而激活病毒蛋白酶。在
目标2,我们将创建基于蛋白酶的电路模块,积极处理这些信号。我们将工程师
阈值模块,用于抑制对正常细胞中的基础途径活性的不期望的响应,以及
组合逻辑模块,以允许来自不同传感器的信号的与式积分。此外,我们会
设计剂量补偿模块,使蛋白质表达对电路传递不敏感,在目标3中,我们
将设计mRNA传递电路,选择性地杀死HCC细胞系,对正常细胞的影响最小。
肝细胞这项研究计划将建立mRNA传递蛋白酶的端到端的可行性
并为未来基于可编程电路的治疗提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL B ELOWITZ其他文献
MICHAEL B ELOWITZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL B ELOWITZ', 18)}}的其他基金
Using spatial, single-cell genomic recording to investigate age-associated clonal hematopoiesis
利用空间单细胞基因组记录研究与年龄相关的克隆造血作用
- 批准号:
10608900 - 财政年份:2023
- 资助金额:
$ 60.24万 - 项目类别:
Cell targeting with synthetic sense-and-respond protease circuits
使用合成的感知和响应蛋白酶电路进行细胞靶向
- 批准号:
10447755 - 财政年份:2020
- 资助金额:
$ 60.24万 - 项目类别:
Cell targeting with synthetic sense-and-respond protease circuits
使用合成的感知和响应蛋白酶电路进行细胞靶向
- 批准号:
10653060 - 财政年份:2020
- 资助金额:
$ 60.24万 - 项目类别:
Cell targeting with synthetic sense-and-respond protease circuits
使用合成的感知和响应蛋白酶电路进行细胞靶向
- 批准号:
10246472 - 财政年份:2020
- 资助金额:
$ 60.24万 - 项目类别:
Quantitative Single-Cell Analysis of Mammalian Notch Signaling States
哺乳动物 Notch 信号状态的定量单细胞分析
- 批准号:
8440168 - 财政年份:2012
- 资助金额:
$ 60.24万 - 项目类别:
Quantitative Single-Cell Analysis of Mammalian Notch Signaling States
哺乳动物Notch信号状态的定量单细胞分析
- 批准号:
8868156 - 财政年份:2012
- 资助金额:
$ 60.24万 - 项目类别:
Quantitative Single-Cell Analysis of Mammalian Notch Signaling States
哺乳动物 Notch 信号状态的定量单细胞分析
- 批准号:
8554786 - 财政年份:2012
- 资助金额:
$ 60.24万 - 项目类别:
Quantitative Single-Cell Analysis of Mammalian Notch Signaling States
哺乳动物 Notch 信号状态的定量单细胞分析
- 批准号:
8683211 - 财政年份:2012
- 资助金额:
$ 60.24万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 60.24万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 60.24万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 60.24万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 60.24万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 60.24万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 60.24万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 60.24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 60.24万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 60.24万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 60.24万 - 项目类别:
Training Grant