Deciphering the Dynamic Notch Signaling Code
破译动态陷波信号代码
基本信息
- 批准号:10349541
- 负责人:
- 金额:$ 40.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-26 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AffectArchitectureBehaviorBiologicalBiological ModelsBrainCell CommunicationCell LineCellsChickChick EmbryoCoculture TechniquesCodeCommunicationDecision MakingDevelopmentDevelopmental ProcessDevelopmental Therapeutics ProgramDiseaseDrug ControlsDrug TargetingDrug usageEmbryoEngineeringEnhancersEnsureEventFamilyGene ExpressionGenesGeneticGenetic TranscriptionHematopoieticImageIn VitroIndividualInterventionLigandsLinkMalignant NeoplasmsMapsMicroscopyMolecularMonitorMusNotch Signaling PathwayPathway interactionsPatternPharmacologyPlayProcessPublic HealthRNARegenerative MedicineRegulationReporterReportingRoleSignal PathwaySignal TransductionSpecificitySpinal CordStructureSystemTestingTimeTissuesVariantWorkangiogenesisbasecell typecellular imagingdevelopmental diseaseexperimental studyfringe proteingenetic testingglycosyltransferasein vivomathematical modelmutantnerve stem cellneurodevelopmentneurogenesisnotch proteinnovelpredictive modelingprogramsreceptorreconstitutionresponseself-renewalsignal processingsingle cell analysissingle moleculesomitogenesisstem cell self renewaltherapeutic targettime usetissue slice preparation
项目摘要
Abstract
The Notch signaling pathway directs cell fate decisions in diverse tissue contexts, plays key roles in disease,
and represents a major drug target. The pathway uses multiple ligands and receptors that interact with one
another in a promiscuous fashion, as well as Fringe glycosyltransferases that modulate those interactions.
Recent work from our lab suggests that these interactions comprise a communication ‘code’ in which different
ligands activate Notch receptors with distinct dynamics. These dynamics are, in turn, decoded to selectively
activate distinct transcriptional target programs. Current understanding of the code is limited to just two ligands
and one receptor. Determining how dynamic encoding occurs across a broader repertoire of
ligand-receptor-Fringe combinations will enable better understanding, prediction, and control of signaling
interactions between different cell types in diverse developmental and disease contexts. Here, we will combine
cell line engineering, quantitative single-cell time-lapse imaging, direct control of Notch dynamics using mutant
receptors and pharmacological perturbations, and analysis of Notch dynamics in neural stem cells and chick
embryos to decipher this code and its functional roles. In Aim 1, we will focus on encoding, by mapping
dynamic signaling modes across a full matrix of Notch receptor, ligand, and Fringe protein combinations. We
will further extend this approach to analyze co-expression of multiple Notch receptors in the same cell, a
pattern that occurs frequently in natural cell types. In Aim 2, we will focus on decoding, by computationally and
experimentally investigating how cis-regulatory and trans-regulatory mechanisms together enable different
signaling dynamics to selectively activate distinct target gene expression programs. Finally, in Aim 3 we will
analyze the function of the Notch dynamic code in neurogenesis, using mouse neural stem cells and chick
embryonic spinal cord development as model systems. In neural stem cells, using a combination of
co-cultures, time-lapse microscopy, and end-point multiplexed single molecule RNA-FISH, we will map
ligand-receptor combinations to Notch activity dynamics, and relate those dynamics in turn to cell fate
decisions. In chick embryos, a Notch-specific fluorescent reporter, together with a new tissue slice preparation
that enables imaging of individual living cells during spinal cord development, will enable us to link Notch
dynamics to cell fate determination. Together, these results will reveal the structure and function of the
dynamic code underlying Notch signaling, and show how it operates in key developmental contexts. More
generally, they should help establish a paradigm for understanding signal encoding and decoding behaviors in
cellular communication systems.
摘要
Notch信号通路在不同的组织环境中指导细胞命运决定,在疾病中起关键作用,
并且是主要的药物靶点。该途径使用多个配体和受体,
另一种以混杂的方式,以及调节这些相互作用的边缘糖基转移酶。
我们实验室最近的工作表明,这些相互作用构成了一个通信“代码”,其中不同的
配体以不同的动力学激活Notch受体。这些动态反过来又被解码,
激活不同的转录靶程序。目前对密码的理解仅限于两种配体
一个受体。确定动态编码如何在更广泛的
配体-受体-边缘的组合将使人们能够更好地理解、预测和控制信号传导
不同细胞类型在不同发育和疾病背景下的相互作用。在这里,我们将联合收割机
细胞系工程,定量单细胞延时成像,使用突变体直接控制Notch动力学
受体和药理学扰动,以及神经干细胞和鸡中Notch动力学分析
胚胎来破译这种代码及其功能作用。在目标1中,我们将重点关注编码,通过映射
跨越Notch受体、配体和Fringe蛋白组合的全矩阵的动态信号传导模式。我们
将进一步扩展这种方法,以分析同一细胞中多种Notch受体的共表达,
在自然细胞类型中经常发生的模式。在目标2中,我们将专注于解码,通过计算和
实验研究顺式调节和反式调节机制如何共同实现不同的
信号传导动力学以选择性地激活不同的靶基因表达程序。最后,在目标3中,
利用小鼠神经干细胞和鸡胚,分析Notch动态密码子在神经发生中的作用
胚胎脊髓发育作为模型系统。在神经干细胞中,
共培养,延时显微镜,和终点多重单分子RNA-FISH,我们将映射
配体-受体组合与Notch活性动力学,并将这些动力学反过来与细胞命运相关
决策在鸡胚中,Notch特异性荧光报告基因与新的组织切片制备物一起,
能够在脊髓发育过程中对单个活细胞进行成像,将使我们能够将Notch
细胞命运决定的动力学总之,这些结果将揭示的结构和功能,
动态代码底层Notch信号,并显示它如何在关键的发展背景下运作。更
一般来说,它们应该有助于建立一个理解信号编码和解码行为的范例,
蜂窝通信系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL B ELOWITZ其他文献
MICHAEL B ELOWITZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL B ELOWITZ', 18)}}的其他基金
Using spatial, single-cell genomic recording to investigate age-associated clonal hematopoiesis
利用空间单细胞基因组记录研究与年龄相关的克隆造血作用
- 批准号:
10608900 - 财政年份:2023
- 资助金额:
$ 40.1万 - 项目类别:
Cell targeting with synthetic sense-and-respond protease circuits
使用合成的感知和响应蛋白酶电路进行细胞靶向
- 批准号:
10447755 - 财政年份:2020
- 资助金额:
$ 40.1万 - 项目类别:
Cell targeting with synthetic sense-and-respond protease circuits
使用合成的感知和响应蛋白酶电路进行细胞靶向
- 批准号:
10653060 - 财政年份:2020
- 资助金额:
$ 40.1万 - 项目类别:
Cell targeting with synthetic sense-and-respond protease circuits
使用合成的感知和响应蛋白酶电路进行细胞靶向
- 批准号:
10037517 - 财政年份:2020
- 资助金额:
$ 40.1万 - 项目类别:
Cell targeting with synthetic sense-and-respond protease circuits
使用合成的感知和响应蛋白酶电路进行细胞靶向
- 批准号:
10246472 - 财政年份:2020
- 资助金额:
$ 40.1万 - 项目类别:
Quantitative Single-Cell Analysis of Mammalian Notch Signaling States
哺乳动物 Notch 信号状态的定量单细胞分析
- 批准号:
8440168 - 财政年份:2012
- 资助金额:
$ 40.1万 - 项目类别:
Quantitative Single-Cell Analysis of Mammalian Notch Signaling States
哺乳动物Notch信号状态的定量单细胞分析
- 批准号:
8868156 - 财政年份:2012
- 资助金额:
$ 40.1万 - 项目类别:
Quantitative Single-Cell Analysis of Mammalian Notch Signaling States
哺乳动物 Notch 信号状态的定量单细胞分析
- 批准号:
8554786 - 财政年份:2012
- 资助金额:
$ 40.1万 - 项目类别:
Quantitative Single-Cell Analysis of Mammalian Notch Signaling States
哺乳动物 Notch 信号状态的定量单细胞分析
- 批准号:
8683211 - 财政年份:2012
- 资助金额:
$ 40.1万 - 项目类别:
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Coarse-Grained Modeling of Aggrecan- Mimetic Copolymers: Polymer Design and Architecture Effects on Structure and Phase Behavior
博士后奖学金:MPS-Ascend:聚集蛋白聚糖模拟共聚物的粗粒度建模:聚合物设计和结构对结构和相行为的影响
- 批准号:
2316666 - 财政年份:2023
- 资助金额:
$ 40.1万 - 项目类别:
Fellowship Award
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
- 批准号:
2334509 - 财政年份:2023
- 资助金额:
$ 40.1万 - 项目类别:
Standard Grant
Architecture, dynamics and cell-specific behavior of tau condensates
tau 凝聚物的结构、动力学和细胞特异性行为
- 批准号:
10662730 - 财政年份:2023
- 资助金额:
$ 40.1万 - 项目类别:
NSF-BSF: Natural selection on the social interactions that mediate collective behavior: ecological pressures and genomic architecture
NSF-BSF:介导集体行为的社会互动的自然选择:生态压力和基因组结构
- 批准号:
1940647 - 财政年份:2020
- 资助金额:
$ 40.1万 - 项目类别:
Continuing Grant
Description method and formal verification method with section behavior model based on software architecture
基于软件体系结构的分段行为模型描述方法和形式化验证方法
- 批准号:
19K11911 - 财政年份:2019
- 资助金额:
$ 40.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Genetic Architecture and Proximate Mechanisms Underlying Indirect Genetic Effects on Cooperative Antipredator Behavior
职业:间接遗传效应对合作性反捕食者行为的遗传结构和直接机制
- 批准号:
1453536 - 财政年份:2015
- 资助金额:
$ 40.1万 - 项目类别:
Continuing Grant
Investigation of the influence of architecture and doping of diamond like carbon coatings on the damage behavior under cyclic mechanical stress
研究类金刚石碳涂层的结构和掺杂对循环机械应力下损伤行为的影响
- 批准号:
279491470 - 财政年份:2015
- 资助金额:
$ 40.1万 - 项目类别:
Research Grants