Full-length LRH-1 structural regulation

全长LRH-1结构调整

基本信息

项目摘要

LRH-1 (NR5A2) is a monomeric nuclear receptor involved in many aspects of liver physiology, including bile acid, cholesterol and glucose homeostasis. LRH-1 activation has beneficial effects on liver metabolism in pre-clinical mouse models. As nuclear receptors like LRH-1 have a very druggable ligand-binding pocket, LRH-1 has been targeted by many drug development efforts with great recent progress, however an LRH-1 agonist is still not available in the clinic. Like most other nuclear receptors, LRH-1 is composed of a DNA-binding domain and a ligand-binding domain, which are connected by a large unstructured Hinge domain. Classic nuclear receptor drug design has focused on the isolated ligand-binding domain, as the regulatory mechanism of this isolated domain is very well understood at the molecular level: binding of a hydrophobic small molecule allosterically alters ligand-binding domain recruitment of a transcriptional coregulator, which regulates nuclear receptor function. However, several lines of evidence suggest inter-domain communication exists between LRH-1 domains, regulating function. Understanding the structural biology behind this inter-domain communication might help LRH-1 drug design efforts, however technical challenges in applying crystallography or cryo-EM has prevented progress, despite great effort from several groups. We used an integrated structural approach to develop a low-resolution, but high confidence model of the intact, full-length LRH-1, using exclusively solution-based biophysical analyses and computational modeling (HDX, SAXS, chemical crosslinking, artificial amino acid benzophenone cross linking, Cys-Cys interdomain crosslinking, Rosetta and MD simulations). The model explains human patient mutations and structure-based mutations predicted to reside in the interface between the domains, which we show alter full length LRH-1 structure and function. Here, we propose to take advantage of this solution-based approach to address several long-standing questions in the field: Aim 1 determines how various ligands change full length LRH-1 interdomain communication. Aim 2 resolves how the SUMO module post-translational modification alters LRH-1 interdomain communication. Aim 3 identifies the genes effected by structure-based LRH-1 mutations in mouse liver and primary hepatocytes. Our current understanding of how LRH-1 structure is regulated is limited to studies of the individual domains. Without understanding how full-length LRH-1 is regulated, we cannot know if our current drug design efforts are taking full advantage of the entire therapeutic capacity of LRH-1.
LRH-1(NR 5A 2)是一种单体核受体,参与肝脏生理学的许多方面,包括胆汁酸、胆固醇和葡萄糖稳态。在临床前小鼠模型中,LRH-1活化对肝脏代谢具有有益作用。由于核受体如LRH-1具有非常可药物化的配体结合口袋,LRH-1已被许多药物开发工作所靶向,最近取得了很大进展,然而LRH-1激动剂在临床上仍然不可用。与大多数其他核受体一样,LRH-1由DNA结合结构域和配体结合结构域组成,它们通过一个大的非结构化铰链结构域连接。经典的核受体药物设计集中在分离的配体结合结构域上,因为这种分离结构域的调节机制在分子水平上非常清楚:疏水性小分子的结合变构地改变了转录辅调节因子的配体结合结构域募集,其调节核受体功能。然而,一些证据表明LRH-1结构域之间存在结构域间通信,调节功能。了解这种域间通信背后的结构生物学可能有助于LRH-1药物设计工作,然而,尽管几个小组付出了巨大努力,但应用晶体学或冷冻EM的技术挑战阻碍了进展。我们使用了一种综合的结构方法来开发一个低分辨率,但高置信度的完整的全长LRH-1模型,使用完全基于溶液的生物物理分析和计算建模(HDX,SAXS,化学交联,人工氨基酸二苯甲酮交联,Cys-Cys域间交联,Rosetta和MD模拟)。该模型解释了人类患者的突变和基于结构的突变,预测这些突变存在于结构域之间的界面中,我们显示这些突变改变了全长LRH-1的结构和功能。在这里,我们建议利用这种基于解决方案的方法来解决该领域的几个长期存在的问题:目标1确定各种配体如何改变全长LRH-1域间通信。目的2解决SUMO模块翻译后修饰如何改变LRH-1域间通讯。目的3鉴定小鼠肝脏和原代肝细胞中LRH-1结构突变影响的基因。我们目前对LRH-1结构如何调节的理解仅限于对单个结构域的研究。如果不了解全长LRH-1是如何调节的,我们就无法知道我们目前的药物设计工作是否充分利用了LRH-1的整个治疗能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raymond Daniel Blind其他文献

Raymond Daniel Blind的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raymond Daniel Blind', 18)}}的其他基金

Unconventional regulation of mTORC1 signaling by inositol phosphate: implications for nutrient-induced premature aging
磷酸肌醇对 mTORC1 信号传导的非常规调节:对营养诱导的过早衰老的影响
  • 批准号:
    10372324
  • 财政年份:
    2022
  • 资助金额:
    $ 34.6万
  • 项目类别:
Unconventional regulation of mTORC1 signaling by inositol phosphate: implications for nutrient-induced premature aging
磷酸肌醇对 mTORC1 信号传导的非常规调节:对营养诱导的过早衰老的影响
  • 批准号:
    10772905
  • 财政年份:
    2022
  • 资助金额:
    $ 34.6万
  • 项目类别:
IPMK function in chromatin
IPMK 在染色质中的功能
  • 批准号:
    10350670
  • 财政年份:
    2020
  • 资助金额:
    $ 34.6万
  • 项目类别:
Full-length LRH-1 structural regulation
全长LRH-1结构调整
  • 批准号:
    10245137
  • 财政年份:
    2020
  • 资助金额:
    $ 34.6万
  • 项目类别:
IPMK function in chromatin
IPMK 在染色质中的功能
  • 批准号:
    9973484
  • 财政年份:
    2020
  • 资助金额:
    $ 34.6万
  • 项目类别:
IPMK function in chromatin
IPMK 在染色质中的功能
  • 批准号:
    10598523
  • 财政年份:
    2020
  • 资助金额:
    $ 34.6万
  • 项目类别:
Full-length LRH-1 structural regulation
全长LRH-1结构调整
  • 批准号:
    10697397
  • 财政年份:
    2020
  • 资助金额:
    $ 34.6万
  • 项目类别:
A new kinase inhibitor for glioblastoma
一种新的胶质母细胞瘤激酶抑制剂
  • 批准号:
    10019480
  • 财政年份:
    2019
  • 资助金额:
    $ 34.6万
  • 项目类别:
Cancer cell signaling through lipids complexed to proteins
通过脂质与蛋白质复合的癌细胞信号传导
  • 批准号:
    8543686
  • 财政年份:
    2012
  • 资助金额:
    $ 34.6万
  • 项目类别:
Cancer cell signaling through lipids complexed to proteins
通过脂质与蛋白质复合的癌细胞信号传导
  • 批准号:
    8708521
  • 财政年份:
    2012
  • 资助金额:
    $ 34.6万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了