Determining the molecular mechanism controlling cell size in mammalian epithelia
确定控制哺乳动物上皮细胞大小的分子机制
基本信息
- 批准号:10038447
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:4D ImagingAcuteAddressAffectAnabolismAnimalsArchitectureAwardBindingBiologyCRISPR/Cas technologyCell CycleCell Cycle ProgressionCell Cycle RegulationCell LineCell SizeCell physiologyCell-Cell AdhesionCellsCellular biologyClustered Regularly Interspaced Short Palindromic RepeatsCoupledCouplingDefectDependenceDiseaseE2F transcription factorsEpidermisEpithelialEpitheliumFamilyFoundationsFutureG1 PhaseG1/S TransitionGeneticImageImmunofluorescence ImmunologicImpairmentIn VitroIntestinesLGR5 geneLightMaintenanceMalignant NeoplasmsMammalian CellMeasuresMentorsMicroscopyMitotic Cell CycleModelingMolecularMorphogenesisMusMutant Strains MiceOrganellesOrganoidsPathway interactionsPhasePhosphorylationPhysiologyProtein FamilyProteinsRB1 geneReagentResearchResearch TechnicsRetinoblastoma ProteinRoleS PhaseShapesSignal TransductionSignaling ProteinSkinStratum BasaleSystemTestingTissuesTrainingTraining ProgramsWorkYeastsbasecareercareer developmentcell behaviorcell growthcell typeepidermal stem cellgenetic manipulationin vivoinhibitor/antagonistinsightintestinal epitheliumintravital imagingknock-downlive cell imagingmalformationoverexpressionskillsstem cells
项目摘要
Project Summary
Cell size is a fundamental parameter of tissue physiology. It is the building block in shaping
tissues, and aberrant cell size is associated with numerous defects in cellular biosynthesis,
tissue malformation, and impaired tissue function.
Work from unicellular yeast showed that cell size can be controlled by coupling cell
growth to progression from G1 to S phase of the cell cycle, so that smaller-born cells spend
longer and grow proportionately more in G1 phase compared to larger-born cells. However, the
majority of studies of in vitro animal cell lines did not identify size coupled G1/S transition as the
mechanism of size control. In my postdoctoral studies, I pioneered a study to address how an in
vivo mouse epithelium controls its cell size. In striking contrast to the majority of studies in vitro,
I found that epidermal stem cells in vivo control their size by coupling the timing of their G1/S
transition to cell size, similar to yeast. Currently, it is unknown how cell size information is
imparted to cell cycle signaling network to result in a cell size-dependent G1/S transition rate.
Here, I propose to determine the molecular mechanism underlying cell size-dependent
G1/S transition through an integrated set of aims. These aims will test my hypothesis that a cell
size-dependent modulation of the retinoblastoma protein (RB) pathway underlies G1/S size
control in mammalian tissues. During the training phase of this award, I propose to use
quantitative live-cell imaging combined with genetic perturbation to test this hypothesis in two
models of mammalian epithelia: (Aim 1) ex vivo intestinal organoids; and (Aim 2) the in vivo
mouse epidermis. During the independent phase of this award, I propose to (Aim 3) establish
an experimental platform to facilitate CRISPR-based endogenous tagging of proteins in
intestinal organoids. This will generate live-cell imaging reagents necessary for further
characterization of how cell cycle and cell size are coupled, as well as how cell size interacts
with other aspects of tissue physiology, including tissue tension and cytoskeletal dynamics.
With the help of an outstanding team of mentors, collaborators, and consultants, I will
train in cutting-edge live-cell imaging, hone research techniques, and acquire skills for my
career development. Together, the proposed scientific and training program form a strong
foundation for an independent research career in understanding the role of cell size in tissue
morphogenesis and maintenance.
项目摘要
细胞大小是组织生理学的一个基本参数。它是塑造人的基石
组织,细胞大小异常与细胞生物合成中的许多缺陷有关,
组织畸形,组织功能受损。
来自单细胞酵母的研究表明,细胞大小可以通过耦合细胞来控制
从细胞周期的G1期向S期发展,使较小出生的细胞
与较大的出生细胞相比,G1期细胞更长,生长比例更大。然而,
大多数体外动物细胞系的研究没有发现大小耦合的G1/S转变是
尺寸控制的机理。在我的博士后研究中,我开创了一项研究,以解决如何在
活体小鼠上皮控制其细胞大小。与大多数体外研究形成鲜明对比的是,
我发现体内的表皮干细胞通过偶联其G1/S的时间来控制其大小
过渡到细胞大小,类似于酵母。目前,像元大小信息的大小尚不清楚
给予细胞周期信号网络,以导致细胞大小依赖的G1/S转移率。
在这里,我建议确定细胞大小依赖的分子机制
G1/S通过一套完整的目标过渡。这些目标将检验我的假设,即一个细胞
视网膜母细胞瘤蛋白(Rb)通路的大小依赖性调节是G1/S大小的基础
在哺乳动物组织中的控制力。在该奖项的培训阶段,我建议使用
定量活细胞成像结合遗传扰动在两个方面验证了这一假说
哺乳动物上皮细胞模型:(AIM 1)体外肠道有机体;(AIM 2)体内
小鼠的表皮。在本奖项的独立阶段,我提议(目标3)建立
促进基于CRISPR的蛋白质内源标记的实验平台
肠道器官。这将产生进一步研究所需的活细胞成像试剂
细胞周期和细胞大小如何耦合以及细胞大小如何相互作用的特征
与组织生理学的其他方面,包括组织张力和细胞骨架动力学。
在一个由导师、合作者和顾问组成的杰出团队的帮助下,我将
培训尖端的活细胞成像,磨练研究技术,并为我的
职业发展。综合起来,提出的科学和训练计划形成了强大的
为了解细胞大小在组织中的作用的独立研究生涯奠定了基础
形态发生和维持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHICONG XIE其他文献
SHICONG XIE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHICONG XIE', 18)}}的其他基金
Determining the molecular mechanism controlling cell size in mammalian epithelia
确定控制哺乳动物上皮细胞大小的分子机制
- 批准号:
10251288 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Determining how the G1/S cell cycle transition regulates the homeostasis of adult intestinal stem cells
确定 G1/S 细胞周期转变如何调节成体肠道干细胞的稳态
- 批准号:
9607770 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Determining how the G1/S cell cycle transition regulates the homeostasis of adult intestinal stem cells
确定 G1/S 细胞周期转变如何调节成体肠道干细胞的稳态
- 批准号:
9899107 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant