Visualizing Live Cell Physiology with High Resolution Using Phase-Contrast STEM
使用相差 STEM 以高分辨率可视化活细胞生理学
基本信息
- 批准号:10034918
- 负责人:
- 金额:$ 54.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAdenosine TriphosphateAdoptedAffectAreaBacteriaBacteriophage P1BiologicalBiological AssayBiologyBiomedical ResearchCell physiologyCellsContractsDevelopmentDoseElectron BeamElectron MicroscopyElectronsElementsEscherichia coliExposure toImageImpairmentInfectionLettersLightLiquid substanceMeasuresMembraneMethodologyMethodsMycoplasmaNanostructuresNoiseOpticsOutcomePhasePhototoxicityPhysiologicalPhysiologyPlasmidsPlayProcessProkaryotic CellsProteinsReporterResolutionRoleSamplingScanningSeriesSignal TransductionSiliconSliceSourceSpecific qualifier valueSpecimenStainsStreptavidinStructureTechnologyTemperatureTestingThickThinnessTimeTitanTransmission Electron MicroscopyVacuumWaterbasebiological systemscryogenicsdetectorelectric fieldgraphenehigh resolution imagingimaging modalityimprovedinorganic phosphateirradiationlight microscopymicroscopic imagingrib bone structuresilicon nitridesimulationtechnology research and developmenttomographyuranyl acetatevectorvoltage
项目摘要
Project Summary
This proposal describes a plan to develop a method for visualizing live cell physiology with high resolution
using integrated Differential Phase Contrast-Scanning Transmission Electron Microscopy (iDPC-STEM) at low
dose to promote viability. Visualizing physiology demands spatial resolution with a commensurate depth-of-
field on the scale of the protein machinery (3-7 nm) that drives it without concomitant damage. With the
introduction of a liquid flow cell containing water in a vacuum-tight envelope made from membranes that are
transparent to the electron beam, it should be possible to scrutinize biology with high-resolution under
physiological conditions with STEM. This proposal focuses on three specific technical challenges, testing
solutions in a crucible of well characterized biological systems:
1. Improve resolution using a liquid flow cell formed from ultra-thin membranes and thin spacers. To
reduce scattering in the membrane and liquid, it is practical to shrink the silicon nitride (SiN) membranes
forming the liquid cell to 8-10 nm, and space them 150 nm apart without compromising the window integrity. To
eliminate bulging in a liquid cell loaded with fluid, the windows will be reinforced with thick ribs so that a large
>400 m2 area can be spanned. However, even 10 nm SiN membranes are still too thick for high-resolution
imaging. So, (3 nm) thin amorphous silicon (a-Si) and atomically thin graphene or h-BN membranes spanning
ribs formed from SiN will be used as windows for high-resolution imaging. The resolution will be tested using a
Titan STEM by visualizing adenosine triphosphate (ATP) and fluorescent streptavidin (STR).
2. Improve contrast with iDPC-STEM imaging. To increase the visibility of transparent biological samples, a
phase-contrast method for imaging, iDPC-STEM, will be adopted that uses a four-quadrant (segmented) split-
detector to measure the gradient of a phase object. iDPC-STEM boasts a higher signal to noise ratio compared
to conventional STEM, which offers the possibility for extremely low-dose imaging. The resolution, contrast and
concomitant damage will be tested in an aberration-corrected, iDPC-equipped Themis Z (with 60 pm
resolution) by visualizing ATP and fluorescent STR in thin (0-50 nm thick) liquid layers.
3. Finally, low-dose iDPC-STEM will be used with an ultra-thin liquid flow cell to visualize the smallest
prokaryotic cells. If the electron probe interacts with a cell at the top membrane in the liquid cell, high-
resolution images may be captured this way. Because the probe is so shallow along the optic-axis, a focus
series may also be used to section a cell for 3D tomography. To test these ideas, four strains of Mycoplasma
(100 nm in size) will be cultured in a shallow (150 nm) flow cell and visualized with iDPC-STEM to discover the
role their nanostructure plays in infection. In specimens this thick, multi-slice simulations may be required to
inform on the structure. After exposure to the beam, a LIVE/DEAD assay, along with Mycoplasma transformed
with plasmids that produce an inducible fluorescent reporter will be used to score viability.
项目摘要
该提案描述了一项计划,以开发一种高分辨率可视化活细胞生理学的方法
使用集成的微分相位对比扫描透射电子显微镜(iDPC-STEM)在低
剂量,以促进生存能力。可视化生理学需要具有相称深度的空间分辨率,
场的规模的蛋白质机器(3-7纳米),驱动它没有伴随的损害。与
将包含水的液体流动池引入由膜制成的真空密封外壳中,所述膜
透明的电子束,应该有可能仔细检查生物与高分辨率下,
生理条件与STEM。该提案侧重于三个具体的技术挑战,测试
在充分表征的生物系统的坩埚中的溶液:
1.使用由超薄膜和薄垫片形成的液体流动池提高分辨率。到
减少膜和液体中的散射,使氮化硅(SiN)膜收缩是可行的
形成8-10 nm的液体单元,并且将它们间隔150 nm而不损害窗口完整性。到
消除在装有流体的液体单元中的膨胀,窗口将用厚肋加强,
可跨越面积大于400平方米。然而,即使是10 nm的SiN膜对于高分辨率来说仍然太厚
显像因此,(3 nm)薄非晶硅(a-Si)和原子级薄石墨烯或h-BN膜跨越
由SiN形成的肋将用作高分辨率成像的窗口。分辨率将使用
泰坦干通过可视化三磷酸腺苷(ATP)和荧光链霉亲和素(STR)。
2.通过iDPC-STEM成像提高对比度。为了增加透明生物样品的可见度,
将采用用于成像的相位对比方法iDPC-STEM,该方法使用四象限(分段)分割,
检测器,用于测量相位对象的梯度。iDPC-STEM拥有更高的信噪比,
传统的STEM,这提供了极低剂量成像的可能性。分辨率、对比度和
将在畸变校正的、配备iDPC的Themis Z(60 pm)中测试伴随损伤
通过在薄(0-50 nm厚)液体层中可视化ATP和荧光STR来测量分辨率)。
3.最后,低剂量iDPC-STEM将与超薄液体流动池一起使用,以可视化最小的
原核细胞如果电子探针与液体池中顶部膜处的细胞相互作用,则高-
可以以这种方式捕获分辨率图像。由于探头沿光轴沿着很浅,
系列也可用于对细胞进行切片以进行3D断层摄影。为了验证这些想法,
(100将在浅(150 nm)流动池中培养,并用iDPC-STEM可视化,以发现
它们的纳米结构在感染中发挥的作用。在这种厚的标本中,可能需要多切片模拟,
通知结构。暴露于光束后,进行LIVE/DEAD试验,沿着支原体转化
产生诱导型荧光报告基因的质粒将用于对活力进行评分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY LOUIS TIMP其他文献
GREGORY LOUIS TIMP的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGORY LOUIS TIMP', 18)}}的其他基金
Visualizing Live Cell Physiology with High Resolution Using Phase-Contrast STEM
使用相差 STEM 以高分辨率可视化活细胞生理学
- 批准号:
10224280 - 财政年份:2020
- 资助金额:
$ 54.07万 - 项目类别:
Visualizing Live Cell Physiology with High Resolution Using Phase-Contrast STEM
使用相差 STEM 以高分辨率可视化活细胞生理学
- 批准号:
10675098 - 财政年份:2020
- 资助金额:
$ 54.07万 - 项目类别:
Sequencing a DNA molecule using a Synthetic Nanopore
使用合成纳米孔对 DNA 分子进行测序
- 批准号:
7103539 - 财政年份:2005
- 资助金额:
$ 54.07万 - 项目类别:
Sequencing a DNA molecule using a Synthetic Nanopore
使用合成纳米孔对 DNA 分子进行测序
- 批准号:
6961225 - 财政年份:2005
- 资助金额:
$ 54.07万 - 项目类别:
Sequencing a DNA molecule using a Synthetic Nanopore
使用合成纳米孔对 DNA 分子进行测序
- 批准号:
7235399 - 财政年份:2005
- 资助金额:
$ 54.07万 - 项目类别:
Sequencing a DNA molecule using a Synthetic Nanopore
使用合成纳米孔对 DNA 分子进行测序
- 批准号:
7647467 - 财政年份:2005
- 资助金额:
$ 54.07万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 54.07万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 54.07万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 54.07万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 54.07万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 54.07万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 54.07万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 54.07万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 54.07万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 54.07万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 54.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)