Receptors, microcircuits and hierarchical connectivity in predictive coding and sensory awareness
预测编码和感官意识中的受体、微电路和分层连接
基本信息
- 批准号:10034682
- 负责人:
- 金额:$ 51.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Adrenergic ReceptorAgonistAnesthesia proceduresAnestheticsAreaAuditoryAuditory areaAwarenessBehaviorBrainBrain DiseasesCodeComplexComputer ModelsConsciousCuesDataDeliriumDementiaDexmedetomidineDisinhibitionDoseDreamsElectroencephalographyEnvironmentExperimental DesignsFeedbackFutureGoalsHealthHumanImpairmentIndividualInterneuronsInterventionKetamineLinkMacacaMachine LearningMeasuresMediatingMental DepressionModalityModelingMolecular TargetMonitorN-Methyl-D-Aspartate ReceptorsNeuronsOrganParietal LobePathway interactionsPerceptionPharmacologyProcessPropofolPublic HealthPulvinar structureReaction TimeReportingResearchRoleSchizophreniaSedation procedureSensorySensory ProcessShapesSignal TransductionSleepStudy modelsSystemTemporal LobeTestingThalamic NucleiUnconscious StateUpdatebaseeffective therapyexperienceexperimental studyfrontal lobehuman dataimprovedinnovationinnovative technologiesinsightmulti-electrode arraysneural correlateneuromechanismneurophysiologynonhuman primatepaired stimulipostsynapticpreventreceptorrelating to nervous systemresponsesedativesensory cortexsensory stimulustherapeutic developmenttransmission processtreatment strategyvisual stimulus
项目摘要
SUMMARY
The standard view of how we make sense of the world around us focuses on reconstructing our environment
from the information received by our sensory organs. In this view, low-level brain areas (e.g., primary sensory
cortex) represent basic features of objects, which are elaborated on in successive processing stages, until
representations become increasingly complex in high-level areas (e.g., frontal cortex). An alternative view is
predictive coding (PC), in which we model our environment to generate sensory predictions. In PC, high-level
brain areas generate predictions of sensory activity and transmit them to low-level areas. A prediction that
does not match the sensory information gives rise to a prediction error. This error signal is sent from low- to
high-level brain areas to update the model of our environment, thereby improving future predictions to minimize
errors. Modeling studies show PC is a fast and efficient way to process sensory information, and PC provides
innovative hypotheses for understanding sleep and anesthesia, particularly when disconnected consciousness
occurs (consciousness without awareness of the environment), like dreaming. PC also holds great promise for
conceptualizing and treating brain disorders, including schizophrenia and depression. But key central features
of PC have not been empirically tested and little is known about the underlying neural mechanisms. The goal
of the proposed project is to characterize the neural dynamics, circuits and receptors enabling PC. There are
two principle hypotheses. First, predictions depend on N-methyl-D-aspartate receptors (NMDAR) because
NMDAR influence the activity of high-level brain areas where predictions are generated, and NMDAR are
enriched on neurons in lower-level areas receiving predictions. Second, in disconnected consciousness, a
breakdown of information transmission from low-level to high-level brain areas, as well as a breakdown of
computations within each area, explains why models of our environment are not updated by external sensory
information. These breakdowns prevent the comparison of predictions and sensory information, as well as the
transmission of prediction errors to high-level brain areas. To test these hypotheses, we use a cross-species
experimental design connecting cellular, circuit and systems levels to behavior. We will perform
electroencephalography, machine learning and computational modeling to define the neural basis of PC in
humans performing prediction tasks. Then we will manipulate PC using different anesthetic agents with diverse
mechanisms, establishing causal relationships between receptors, large-scale brain networks and PC. In
parallel, we will simultaneously record activity from sensory and high-level brain areas of non-human primates
(NHPs) using the same PC tasks and pharmacological interventions to measure cellular and circuit level
contributions to PC. Investigating PC will illuminate the fundamental mechanisms of perception, providing
critical insights to guide therapeutic development for multiple health conditions.
总结
关于我们如何理解周围世界的标准观点侧重于重建我们的环境
从我们的感觉器官接收到的信息。在这种观点中,低水平的大脑区域(例如,初级感觉
皮质)代表物体的基本特征,这些特征在连续的处理阶段中被详细阐述,直到
表示在高级区域中变得越来越复杂(例如,额叶皮层)。另一种观点是,
预测编码(PC),在其中我们对环境进行建模以生成感官预测。在PC中,高级别
大脑区域产生对感觉活动的预测,并将其传递到低水平区域。的预测
与传感信息不匹配会导致预测误差。该错误信号从低电平发送到
高级大脑区域来更新我们的环境模型,从而改善未来的预测,
错误.模型研究表明,PC是一种快速有效的处理感觉信息的方法,PC提供了
了解睡眠和麻醉的创新假设,特别是当意识断开时
发生(意识没有意识到环境),就像做梦一样。PC也有很大的希望,
概念化和治疗大脑疾病,包括精神分裂症和抑郁症。但关键的核心特征
的PC还没有经验性的测试和鲜为人知的是关于潜在的神经机制。目标
的拟议项目是表征的神经动力学,电路和受体,使PC。有
两个基本假设。首先,预测依赖于N-甲基-D-天冬氨酸受体(NMDAR),因为
NMDAR影响产生预测的高级大脑区域的活动,并且NMDAR
在接受预测的较低水平区域的神经元上富集。第二,在分离的意识中,
从低级到高级大脑区域的信息传输的崩溃,以及
每个区域内的计算,解释了为什么我们的环境模型没有被外部感官更新,
信息.这些故障阻止了预测和感官信息的比较,以及
将预测错误传递到高级大脑区域。为了验证这些假设,我们使用了一个跨物种的
实验设计连接细胞,电路和系统水平的行为。我们将执行
脑电图,机器学习和计算建模来定义PC的神经基础,
人类执行预测任务。然后,我们将使用不同的麻醉剂,
机制,建立受体,大规模脑网络和PC之间的因果关系。在
与此同时,我们将同时记录非人类灵长类动物的感觉和高级大脑区域的活动
(NHP)使用相同的PC任务和药物干预来测量细胞和回路水平
对PC的贡献研究PC将阐明感知的基本机制,
关键的见解,以指导治疗发展的多种健康状况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuri B Saalmann其他文献
Yuri B Saalmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuri B Saalmann', 18)}}的其他基金
Receptors, microcircuits and hierarchical connectivity in predictive coding and sensory awareness
预测编码和感官意识中的受体、微电路和分层连接
- 批准号:
10216373 - 财政年份:2020
- 资助金额:
$ 51.72万 - 项目类别:
Receptors, microcircuits and hierarchical connectivity in predictive coding and sensory awareness
预测编码和感官意识中的受体、微电路和分层连接
- 批准号:
10663208 - 财政年份:2020
- 资助金额:
$ 51.72万 - 项目类别:
Receptors, microcircuits and hierarchical connectivity in predictive coding and sensory awareness
预测编码和感官意识中的受体、微电路和分层连接
- 批准号:
10459282 - 财政年份:2020
- 资助金额:
$ 51.72万 - 项目类别:
Prefrontal cortico-thalamic dynamics in cognitive control
认知控制中的前额皮质丘脑动力学
- 批准号:
9925256 - 财政年份:2016
- 资助金额:
$ 51.72万 - 项目类别:
Prefrontal cortico-thalamic dynamics in cognitive control
认知控制中的前额皮质丘脑动力学
- 批准号:
9134993 - 财政年份:2016
- 资助金额:
$ 51.72万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 51.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 51.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 51.72万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 51.72万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 51.72万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 51.72万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 51.72万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 51.72万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 51.72万 - 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
- 批准号:
23K05057 - 财政年份:2023
- 资助金额:
$ 51.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)