Big Data Predictive Phylogenetics with Bayesian Learning

使用贝叶斯学习的大数据预测系统发育学

基本信息

项目摘要

Big Data Predictive Phylogenetics with Bayesian Learning Abstract Andrew Holbrook, Ph.D., is a Bayesian statistician with a broad background in applied, theoretical and compu- tational data science. His proposed research Big Data Predictive Phylogenetics with Bayesian Learning tackles viral outbreak forecasting by combining Bayesian phylogenetic modeling with flexible, `self-exciting' stochastic process models. The development and publication of open-source, high-performance computing software for his models will facilitate fast epidemiological field response in a big data setting. Dr. Holbrook will apply his method- ology to the reconstruction of the 2015-2016 Zika virus epidemic in the Americas, focusing on identifying key geographical routes of transmission and phylogenetic clades with enhanced infectiousness. Candidate: Dr. Holbrook is Postdoctoral Scholar at the UCLA Department of Human Genetics. He earned his Ph.D. in Statistics from the Department of Statistics at UC Irvine, during which time he completed his dissertation Geometric Bayes, an investigation into Bayesian modeling and computing on abstract mathematical spaces, and simultaneously participated in scientific collaborations at the UC Irvine Alzheimer's Disease Research Center. The proposed career development plan will establish Dr. Holbrook as an independent leader in data intensive viral epidemiology by 1) facilitating coursework to build biological domain knowledge, 2) affording Dr. Holbrook the opportunity to lead his own project while remaining under the expert oversight of UCLA Prof. Marc Suchard, M.D., Ph.D., and 3) allowing Dr. Holbrook to continue his focus on quantitative viral epidemiology once he has moved to a faculty commitment. Mentors: During the first three years of the award period, Dr. Holbrook will work closely with Prof. Suchard, continuing their current schedule of weekly meetings. Prof. Suchard is a leading expert in both Bayesian phylo- genetics and high-performance statistical computing; and with his medical background, Prof. Suchard will advise Dr. Holbrook in his expansion of domain knowledge in viral epidemiology. As secondary mentor, Prof. Kristian Andersen, Ph.D., of the Scripps Institute will advise Dr. Holbrook in the impactful application of his statistical and computational methodologies to the 2015-2016 Zika virus epidemic. Dr. Holbrook and Profs. Suchard and Andersen will maintain their collaborations after the postdoctoral period. Research: Bayesian phylogenetics successfully reconstructs evolutionary histories but fails to predict viral spread. Self-exciting point processes are devoid of biological insight and fail to account for geographic networks of diffusion. Aim 1 addresses deficiencies in these two complementary viral epidemiological modeling techniques by innovating a combined model where the phylogenetic and self-excitatory components support each other. Aim 2 makes widespread adoption a reality by publishing open-source, massively parallel computing software suitable for big data analysis. Aim 3 reconstructs the 2015-2016 Zika epidemic, learns key geographical routes of transmission and identifies phylogenetic clades with enhanced infectiousness.
基于贝叶斯学习的大数据预测系统发育

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew James Holbrook其他文献

Andrew James Holbrook的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew James Holbrook', 18)}}的其他基金

Big Data Predictive Phylogenetics with Bayesian Learning
使用贝叶斯学习的大数据预测系统发育学
  • 批准号:
    10176406
  • 财政年份:
    2020
  • 资助金额:
    $ 10.65万
  • 项目类别:
Big Data Predictive Phylogenetics with Bayesian Learning
使用贝叶斯学习的大数据预测系统发育学
  • 批准号:
    10398175
  • 财政年份:
    2020
  • 资助金额:
    $ 10.65万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了