Naturalistic driving as a functional neurobehavioral marker of preclinical and symptomatic Alzheimer disease
自然驾驶作为临床前和症状性阿尔茨海默病的功能性神经行为标志
基本信息
- 批准号:10040061
- 负责人:
- 金额:$ 131.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerometerActivities of Daily LivingAgeAlzheimer&aposs DiseaseAlzheimer’s disease biomarkerAmyloidAreaArea Under CurveAutomobile DrivingBehaviorBiologicalBiological MarkersBiostatistical MethodsBloodCerebrospinal FluidCessation of lifeClinicalClinical TrialsCognitionCognitiveComplexDataData CollectionDementiaDiagnosticDisease ProgressionElderlyEnrollmentEnvironmentEvaluationFrequenciesFutureGlobal Positioning SystemGoalsGoldHealthHome environmentImageImpaired cognitionIndividualInfrastructureInjuryInterventionKnowledgeLengthLicensureLiquid substanceMapsMeasuresMethodologyMethodsMonitorMotorNeuropsychological TestsNeuropsychologyParticipantPerformancePersonsPopulationProxyPublic HealthResearchRiskSeaSensorySpeedSpinal PunctureSymptomsSystemTestingTimeTransportationUnited StatesVehicle crashVisualVisuospatialWeatherWorkage groupagedaging brainbasebehavior measurementblood-based biomarkercognitive abilitycohortcomorbiditycostdata standardsdigitaldriving behaviorexecutive functionfitnessfunctional disabilityhuman old age (65+)imaging biomarkerimprovedin vivoinstrumental activity of daily livingmobile applicationmolecular markermultidisciplinaryneurobehavioralneuroimaging markernovelolder driverpre-clinicalpreventresponseskillstau Proteinsway finding
项目摘要
PROJECT SUMMARY/ABSTRACT
Our long-term goal is to accurately identify who is at risk of driving decline, to establish whether driving
behavior can be used as a functional, neurobehavioral biomarker of Alzheimer disease (AD), to forecast when
driving decline will occur, to intervene before the time of decline, and to prevent a significant number of
crashes, injuries, and death. Our findings indicate that the long preclinical stage of AD, as reflected in amyloid
and tau imaging and cerebrospinal fluid (CSF) biomarkers among cognitively normal older adults, is associated
with poorer driving performance on a road test, as well as with fewer trips made in a personal vehicle. This
project will test the extent to which an in-vehicle datalogger, measuring everyday driving behavior continuously,
reflects underlying neuropathological AD and is associated with prevalent and incident cognitive impairment.
This research is significant because 36 million licensed drivers are aged 65 years or older, and the
number of older adults in the United States is expected to double by 2050, when 1 in 4 drivers will be 65+. Our
work suggests that changes in driving, an instrumental activity of daily living that involves both cognitive and
functional abilities, may reflect neuropathological AD and precede the emergence of dementia symptoms.
Our Specific Aims will (1) Use established cerebrospinal fluid (CSF) and imaging biomarkers to define
preclinical AD and test the ability of the Driving Real-world In-Vehicle Evaluation System (DRIVES) to
distinguish persons with and without preclinical AD among cognitively normal individuals, and assess the ability
of this system to predict the future onset of dementia, (2) Test the ability of the DRIVES data to distinguish
cognitively normal persons from those with dementia cross-sectionally, and to examine driving behavior over
time for both groups, (3) Determine whether the DRIVES data, combined with cognitive, health, and functional
data from older adults, can improve prediction of incident cognitive impairment and dementia.
To test these Specific Aims, we have assembled a multidisciplinary team with expertise in AD,
neuroimaging biomarkers (amyloid and tau), fluid biomarkers (CSF and blood), naturalistic driving, spatial
navigation, cognitive and brain aging, and longitudinal biostatistical methods. We will capitalize on existing
institutional infrastructure to longitudinally follow 300 cognitively normal older adults and 50 older adults with
mild or very mild dementia, to create a cohort of 350 individuals. This cohort will be followed using a naturalistic
driving methodology that will capture their driving behaviors on a daily basis. Their cognition will be tested
annually using the Clinical Dementia Rating and various neuropsychological measures.
Once obtained, this knowledge can be used to map driving as a neurobehavioral biomarker that may be
monitored and used for clinical trials and interventions throughout disease progression of AD.
项目总结/摘要
我们的长期目标是准确识别谁有驾驶能力下降的风险,
行为可以作为阿尔茨海默病(AD)的功能性神经行为生物标志物,
驾驶下降将发生,干预下降之前的时间,并防止大量的
车祸受伤和死亡我们的研究结果表明,阿尔茨海默病的长期临床前阶段,如淀粉样蛋白,
认知正常老年人的tau成像和脑脊液(CSF)生物标志物与
道路测试中的驾驶性能较差,以及在个人车辆中进行的行程较少。这
该项目将测试车载数据记录器,连续测量日常驾驶行为,
反映了潜在的神经病理性AD,并与普遍和偶发的认知障碍有关。
这项研究意义重大,因为3600万持牌司机年龄在65岁或以上,
到2050年,美国老年人的数量预计将翻一番,届时四分之一的司机将超过65岁。我们
这项研究表明,驾驶的变化,一种涉及认知和
功能能力,可能反映神经病理性AD和痴呆症状的出现之前。
我们的具体目标是(1)使用已建立的脑脊液(CSF)和成像生物标志物来定义
临床前AD和测试驾驶真实世界车载评估系统(DRIVES)的能力,
在认知正常个体中区分患有和不患有临床前AD的人,并评估
(2)测试DRIVES数据区分痴呆的能力
认知正常的人与痴呆症患者的横断面,并检查驾驶行为,
(3)确定DRIVES数据是否与认知、健康、功能
来自老年人的数据可以改善对认知障碍和痴呆的预测。
为了测试这些特定目标,我们组建了一个具有AD专业知识的多学科团队,
神经成像生物标志物(淀粉样蛋白和tau),流体生物标志物(CSF和血液),自然驾驶,空间
导航,认知和大脑老化,以及纵向生物统计方法。我们将利用现有的
机构基础设施将纵向跟踪300名认知正常的老年人和50名患有
轻度或非常轻度的痴呆症,以创建一个350人的队列。这一组将使用自然主义的
驾驶方法,将捕捉他们的日常驾驶行为。他们的认知将受到考验
每年使用临床痴呆症评级和各种神经心理学措施。
一旦获得,这些知识可以用来绘制驾驶作为神经行为生物标志物,
监测并用于临床试验和AD整个疾病进展的干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ganesh M Babulal其他文献
The Association Between Women's Education and Employment and Household Food Security in Afghanistan
阿富汗妇女教育与就业和家庭粮食安全之间的关系
- DOI:
10.1057/s41287-023-00614-9 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yiqi Zhu;M. R. Azami;M. Fazal;Dauod Khuram;Lora Iannotti;Ganesh M Babulal;J. Trani - 通讯作者:
J. Trani
Ganesh M Babulal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ganesh M Babulal', 18)}}的其他基金
Aging Research Characterizing Health Equity via Social determinants (ARCHES)
通过社会决定因素表征健康公平的老龄化研究 (ARCCHES)
- 批准号:
10301671 - 财政年份:2021
- 资助金额:
$ 131.72万 - 项目类别:
Aging Research Characterizing Health Equity via Social determinants (ARCHES)
通过社会决定因素表征健康公平的老龄化研究 (ARCCHES)
- 批准号:
10689089 - 财政年份:2021
- 资助金额:
$ 131.72万 - 项目类别:
Naturalistic driving as a functional neurobehavioral marker of preclinical and symptomatic Alzheimer disease
自然驾驶作为临床前和症状性阿尔茨海默病的功能性神经行为标志
- 批准号:
10450133 - 财政年份:2020
- 资助金额:
$ 131.72万 - 项目类别:
The Impact of Depression and Preclinical Alzheimer Disease on Driving Among Older Adults
抑郁症和临床前阿尔茨海默病对老年人驾驶的影响
- 批准号:
10188393 - 财政年份:2020
- 资助金额:
$ 131.72万 - 项目类别:
The Impact of Depression and Preclinical Alzheimer Disease on Driving Among Older Adults
抑郁症和临床前阿尔茨海默病对老年人驾驶的影响
- 批准号:
10625268 - 财政年份:2020
- 资助金额:
$ 131.72万 - 项目类别:
Naturalistic driving as a functional neurobehavioral marker of preclinical and symptomatic Alzheimer disease
自然驾驶作为临床前和症状性阿尔茨海默病的功能性神经行为标志
- 批准号:
10261382 - 财政年份:2020
- 资助金额:
$ 131.72万 - 项目类别:
Naturalistic driving as a functional neurobehavioral marker of preclinical and symptomatic Alzheimer disease
自然驾驶作为临床前和症状性阿尔茨海默病的功能性神经行为标志
- 批准号:
10647874 - 财政年份:2020
- 资助金额:
$ 131.72万 - 项目类别:
The Impact of Depression and Preclinical Alzheimer Disease on Driving Among Older Adults
抑郁症和临床前阿尔茨海默病对老年人驾驶的影响
- 批准号:
10394313 - 财政年份:2020
- 资助金额:
$ 131.72万 - 项目类别:
BIOMARKERS AND DRIVING PERFORMANCE IN PRECLINICAL ALZHEIMER DISEASE AMONG AFRICAN AMERICANS AND CAUCASIANS
非裔美国人和白人临床前阿尔茨海默病的生物标志物和驱动表现
- 批准号:
9455431 - 财政年份:2017
- 资助金额:
$ 131.72万 - 项目类别:
相似海外基金
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
- 批准号:
2473795 - 财政年份:2024
- 资助金额:
$ 131.72万 - 项目类别:
Studentship
Developing a trunk function assessment for hemiplegics. -For improving activities of daily living-
开发偏瘫患者的躯干功能评估。
- 批准号:
23K10540 - 财政年份:2023
- 资助金额:
$ 131.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relation with the activities of daily living and the subjective values among people with social withdrawal
社交退缩者日常生活活动与主观价值观的关系
- 批准号:
23K16596 - 财政年份:2023
- 资助金额:
$ 131.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: RI: Understanding Activities of Daily Living in Indoor Scenarios
CRII:RI:了解室内场景中的日常生活活动
- 批准号:
2245652 - 财政年份:2023
- 资助金额:
$ 131.72万 - 项目类别:
Standard Grant
Association between Nursing Care and Prognosis and Activities of Daily Living in Acute Stroke patients by using Big Data.
利用大数据研究急性脑卒中患者的护理与预后和日常生活活动的关系。
- 批准号:
23K16412 - 财政年份:2023
- 资助金额:
$ 131.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sources of vulnerability among those using homecare despite having no limitations in Activities of Daily Living. An intersectionality analysis
尽管日常生活活动没有限制,但使用家庭护理的人的脆弱性来源。
- 批准号:
499112 - 财政年份:2023
- 资助金额:
$ 131.72万 - 项目类别:
Operating Grants
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10429480 - 财政年份:2022
- 资助金额:
$ 131.72万 - 项目类别:
Effects of a model of nurses-occupational therapists collaborative practice on activities of daily living in elderly patients
护士-职业治疗师合作实践模式对老年患者日常生活活动的影响
- 批准号:
22K17540 - 财政年份:2022
- 资助金额:
$ 131.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Assessing a Novel Virtual Environment that Primes Individuals Living with AD/ADRD to Accomplish Activities of Daily Living.
评估一种新颖的虚拟环境,该环境可以帮助 AD/ADRD 患者完成日常生活活动。
- 批准号:
10668160 - 财政年份:2022
- 资助金额:
$ 131.72万 - 项目类别:
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10621820 - 财政年份:2022
- 资助金额:
$ 131.72万 - 项目类别: