The Impact of Depression and Preclinical Alzheimer Disease on Driving Among Older Adults
抑郁症和临床前阿尔茨海默病对老年人驾驶的影响
基本信息
- 批准号:10188393
- 负责人:
- 金额:$ 121.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAccelerometerAffectAge-YearsAgingAlzheimer&aposs DiseaseAlzheimer’s disease biomarkerAmyloidAntidepressive AgentsAreaAutomobile DrivingBehaviorBiological MarkersBiostatistical MethodsCerebrospinal FluidCessation of lifeClinicalCognitionCognitiveDataDementiaDestinationsDiagnosisDisease ProgressionElderlyEnrollmentEnvironmentEvaluationEventExclusion CriteriaExhibitsGoalsHabitsHealthImageIndividualInfrastructureInjuryInternationalInterviewKnowledgeLeftLongitudinal StudiesMajor Depressive DisorderMeasuresMental DepressionMethodologyMotorNeuropsychological TestsOutcomeParticipantPatient Self-ReportPatientsPerformancePersonsPharmaceutical PreparationsPopulationProxyPsychometricsQuestionnairesRecording of previous eventsResearchRiskRisk BehaviorsSafetySpeedStandardizationSystemTestingTimeUnited StatesVehicle crashVisitagedaging brainamyloid imagingbasecohortdepressive symptomsdriving behaviorfollow-uphealth care availabilityhuman old age (65+)imaging biomarkermultidisciplinaryneuroimaging markerneuropsychiatryolder driverpre-clinicalprospectiverecruitsocial engagementsynergismtau Proteinstrendunsafe driving
项目摘要
PROJECT SUMMARY/ABSTRACT
Our long-term goal is to accurately identify who is at risk of decline in driving, to forecast when decline
will occur, and to intervene before decline, thereby reducing the numbers of crashes, injuries, and death in
older adults. Our findings indicate that the long preclinical stage of Alzheimer disease (AD), as reflected in
amyloid imaging and cerebrospinal fluid (CSF) biomarkers among cognitively normal persons, is associated
with poorer driving performance on a standardized road test. This project will assess how depression,
preclinical AD, and antidepressants affect driving behavior in cognitively normal older adults (≥ 65 years).
This research is significant because 36 million licensed drivers are aged 65 years or older, and the
number of older adults in the United States is expected to double by 2050, when 1 in 4 drivers will be 65 years
or older. Motor vehicle crashes are a leading cause of injury and death in older adults (814 daily crashes).
Driving is a cognitively demanding and highly dynamic activity. Depression and symptomatic AD independently
increase the risk of an automobile crash. Depression is also a factor for conversion to symptomatic AD, yet it is
often used as an exclusion criterion for aging studies. The adverse impact of depression and antidepressant
use on driving, and the impact of depression on AD is documented; yet an understanding of the synergy
between these three areas is lacking.
Our Specific Aims will (1) characterize the relationship between major depression (diagnosis) and
naturalistic driving behavior in a prospective, longitudinal study, (2) examine whether major depression and
preclinical AD, combined, predict faster longitudinal change in driving behavior among older adults, (3) assess
the impact of medications (antidepressants), major depression, and preclinical AD on naturalistic driving.
To test these Specific Aims, we have assembled a multidisciplinary team with expertise in AD,
depression, neuroimaging biomarkers, CSF biomarkers, naturalistic driving, cognitive and brain aging, and
longitudinal biostatistical methods. We will capitalize on existing infrastructure to follow 70 currently enrolled
individuals and enroll an additional 70 participants with depression, to create a cohort of 140 individuals. This
cohort will utilize a naturalistic driving methodology that will capture their driving behaviors on an everyday
basis. Their cognition will be tested annually using the Clinical Dementia Rating and various psychometric
measures. Participant depression will be characterized using the Mini-International Neuropsychiatric Interview
(MINI) and the 9-item Patient Health Questionnaire (PHQ-9).
Once obtained, this knowledge can be used to create stage-appropriate, personalized, driving-related
safety strategies that can be implemented upon diagnosis, and adjusted throughout disease progression.
项目总结/摘要
我们的长期目标是准确识别谁处于驾驶下降的风险中,预测何时下降。
将发生,并在下降之前进行干预,从而减少撞车,受伤和死亡的数量,
老年人我们的研究结果表明,阿尔茨海默病(AD)的长期临床前阶段,如在
淀粉样蛋白成像和脑脊液(CSF)生物标志物在认知正常的人,是相关的
在标准道路测试中的驾驶表现较差。这个项目将评估抑郁症,
临床前AD和抗抑郁药影响认知正常老年人(≥ 65岁)的驾驶行为。
这项研究意义重大,因为3600万持牌司机年龄在65岁或以上,
到2050年,美国老年人的数量预计将翻一番,届时每4名驾驶员中就有1名65岁
或者更老机动车碰撞是老年人受伤和死亡的主要原因(每天814起碰撞)。
驾驶是一项对认知要求很高且高度动态的活动。抑郁症和症状性AD独立
增加车祸的风险。抑郁症也是转换为症状性AD的一个因素,但它是
常用作老化研究的排除标准。抑郁症和抗抑郁药的不良影响
使用驾驶,抑郁症对AD的影响是有记录的;但对协同作用的理解
这三个方面都是欠缺的。
我们的具体目标是(1)描述重度抑郁症(诊断)与
自然驾驶行为的前瞻性,纵向研究,(2)检查是否严重抑郁症,
结合临床前AD,预测老年人驾驶行为的更快纵向变化,(3)评估
药物(抗抑郁药)、重度抑郁症和临床前AD对自然驾驶的影响。
为了测试这些特定目标,我们组建了一个具有AD专业知识的多学科团队,
抑郁症,神经影像学生物标志物,CSF生物标志物,自然驾驶,认知和大脑老化,以及
纵向生物统计学方法。我们将利用现有的基础设施,
然后再招募70名抑郁症患者,以创建一个140人的队列。这
队列将利用自然主义的驾驶方法,将捕捉他们的日常驾驶行为,
基础他们的认知将每年使用临床痴呆症评级和各种心理测量进行测试
措施将使用小型国际神经精神访谈对受试者的抑郁症进行表征
(MINI)和9项患者健康问卷(PHQ-9)。
一旦获得,这些知识可用于创建适合舞台的、个性化的、与驾驶相关的
可以在诊断时实施的安全策略,并在整个疾病进展过程中进行调整。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ganesh M Babulal其他文献
The Association Between Women's Education and Employment and Household Food Security in Afghanistan
阿富汗妇女教育与就业和家庭粮食安全之间的关系
- DOI:
10.1057/s41287-023-00614-9 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yiqi Zhu;M. R. Azami;M. Fazal;Dauod Khuram;Lora Iannotti;Ganesh M Babulal;J. Trani - 通讯作者:
J. Trani
Ganesh M Babulal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ganesh M Babulal', 18)}}的其他基金
Aging Research Characterizing Health Equity via Social determinants (ARCHES)
通过社会决定因素表征健康公平的老龄化研究 (ARCCHES)
- 批准号:
10301671 - 财政年份:2021
- 资助金额:
$ 121.57万 - 项目类别:
Aging Research Characterizing Health Equity via Social determinants (ARCHES)
通过社会决定因素表征健康公平的老龄化研究 (ARCCHES)
- 批准号:
10689089 - 财政年份:2021
- 资助金额:
$ 121.57万 - 项目类别:
Naturalistic driving as a functional neurobehavioral marker of preclinical and symptomatic Alzheimer disease
自然驾驶作为临床前和症状性阿尔茨海默病的功能性神经行为标志
- 批准号:
10450133 - 财政年份:2020
- 资助金额:
$ 121.57万 - 项目类别:
The Impact of Depression and Preclinical Alzheimer Disease on Driving Among Older Adults
抑郁症和临床前阿尔茨海默病对老年人驾驶的影响
- 批准号:
10625268 - 财政年份:2020
- 资助金额:
$ 121.57万 - 项目类别:
Naturalistic driving as a functional neurobehavioral marker of preclinical and symptomatic Alzheimer disease
自然驾驶作为临床前和症状性阿尔茨海默病的功能性神经行为标志
- 批准号:
10261382 - 财政年份:2020
- 资助金额:
$ 121.57万 - 项目类别:
Naturalistic driving as a functional neurobehavioral marker of preclinical and symptomatic Alzheimer disease
自然驾驶作为临床前和症状性阿尔茨海默病的功能性神经行为标志
- 批准号:
10647874 - 财政年份:2020
- 资助金额:
$ 121.57万 - 项目类别:
The Impact of Depression and Preclinical Alzheimer Disease on Driving Among Older Adults
抑郁症和临床前阿尔茨海默病对老年人驾驶的影响
- 批准号:
10394313 - 财政年份:2020
- 资助金额:
$ 121.57万 - 项目类别:
Naturalistic driving as a functional neurobehavioral marker of preclinical and symptomatic Alzheimer disease
自然驾驶作为临床前和症状性阿尔茨海默病的功能性神经行为标志
- 批准号:
10040061 - 财政年份:2020
- 资助金额:
$ 121.57万 - 项目类别:
BIOMARKERS AND DRIVING PERFORMANCE IN PRECLINICAL ALZHEIMER DISEASE AMONG AFRICAN AMERICANS AND CAUCASIANS
非裔美国人和白人临床前阿尔茨海默病的生物标志物和驱动表现
- 批准号:
9455431 - 财政年份:2017
- 资助金额:
$ 121.57万 - 项目类别:
相似海外基金
Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
- 批准号:
10731315 - 财政年份:2023
- 资助金额:
$ 121.57万 - 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
- 批准号:
10727374 - 财政年份:2023
- 资助金额:
$ 121.57万 - 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
- 批准号:
566730-2021 - 财政年份:2022
- 资助金额:
$ 121.57万 - 项目类别:
Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10444075 - 财政年份:2022
- 资助金额:
$ 121.57万 - 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10617774 - 财政年份:2022
- 资助金额:
$ 121.57万 - 项目类别:
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
- 批准号:
22K17623 - 财政年份:2022
- 资助金额:
$ 121.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
- 批准号:
475451 - 财政年份:2022
- 资助金额:
$ 121.57万 - 项目类别:
Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
- 批准号:
2120223 - 财政年份:2021
- 资助金额:
$ 121.57万 - 项目类别:
Standard Grant
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
- 批准号:
466914 - 财政年份:2021
- 资助金额:
$ 121.57万 - 项目类别:
Studentship Programs
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
- 批准号:
21K19804 - 财政年份:2021
- 资助金额:
$ 121.57万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




