Investigating the mechanobiology of ER stress in the context of cell proliferation
研究细胞增殖背景下内质网应激的力学生物学
基本信息
- 批准号:10040359
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdhesionsApoptoticAutoimmune DiseasesAwardBinding ProteinsCardiovascular systemCell DeathCell LineCell ProliferationCellsCellular MechanotransductionCellular biologyCessation of lifeChemicalsCommunicationComplementCoupledCouplingCuesDefectDependenceDevelopmentDiabetes MellitusDiseaseEmbryoEndoplasmic ReticulumEngineeringEnvironmentEnzymesExhibitsExtracellular MatrixFibroblastsFoundationsFutureGenesGrowthHealthHumanImpairmentIndividualInositolInvestigationJointsLaboratoriesLeadLearningLifeLinkLocationMalignant NeoplasmsMammalian CellMapsMeasuresMechanicsMediatingMembraneMentorsMolecularMonitorMorphogenesisMultiple MyelomaMusNatureNerve DegenerationNeuronsOutcomeOutputPathway interactionsPatientsPatternPhasePhosphotransferasesPlayPorosityPostdoctoral FellowProcessPropertyProteinsPublishingQuantitative MicroscopyRegulationResearchResolutionResourcesRibonucleasesRoleScientistSignal PathwaySignal TransductionStressTherapeuticTissuesVascularizationVertebratesVirus DiseasesWorkZebrafishbiological adaptation to stresscell growthcell motilitycell typecollaborative environmentendoplasmic reticulum stressexperimental studyextracellularhuman diseasein vivoinhibitor/antagonistmechanotransductionmigrationoptogeneticspleiotropismprogramsprotein foldingrapid techniqueresponsescaffoldsensorskillsspatiotemporalthree dimensional cell culturetooltransmission process
项目摘要
Project summary
The unfolded protein response (UPR) is a critically important signaling network that is responsible for
maintaining the health of the endoplasmic reticulum (ER). While the typical outcome of UPR activation is
cytoprotective, prolonged or excessive UPR activity can drive cells towards apoptotic death. The UPR serves as
a potent controller of cell fate, and its dysregulation is known to be implicated in a broad range of human diseases
such as diabetes, neurodegeneration, autoimmune disorders, and cancer. The UPR comprises three
interconnected branches that exhibit spatiotemporally distinct patterns of activation both in normal development
and in disease. A lack of understanding of how the UPR is differentially regulated in different cell types and
tissues has so far precluded it from being successfully targeted in human patients.
The best-studied branch of the UPR is mediated by the ER membrane-resident bifunctional kinase-RNase
IRE1 (inositol-requiring enzyme 1). Recent work demonstrated that IRE1 signaling is closely tied to adhesion,
cell migration, and cells’ ability to receive and respond to external cues. Cell signaling is often coupled to
mechanical and chemical changes in the local microenvironment, but the involvement of IRE1 and the UPR in
this coupling is only beginning to be revealed. Since UPR components are ubiquitously expressed in nearly all
cell types, context-dependent regulation offers an attractive potential explanation for the observed large
variances in UPR signaling across tissues. However, it remains to be determined what properties of the local
environment cause cells to rely on UPR signaling and how this information is communicated.
I propose to build on the tools I developed as a postdoc and on the unique combined resources of my two
co-mentors to answer these challenging and exciting questions. I will engineer precisely defined growth
substrates of varying chemical composition, porosity, stiffness, and 3-dimensional organization. I will then use
chemical inhibitors and optogenetic activators of IRE1 to identify which substrate properties render cells reliant
on IRE1 signaling and which properties render IRE1 dispensable. Substrate dependence of IRE1 signaling will
be functionally separated from general UPR activation and mapped to specific nodes within the UPR. Finally, a
targeted approach will identify the specific molecular players responsible for the information flow between ER
stress sensors and the extracellular environment.
Throughout the mentored phase of the award, I will continue to hone my skills and qualifications as an
independent scientist. Working closely with the lab of Dr. Valerie Weaver will provide me with the expertise in
cellular mechanobiology and substrate engineering, complementing the deep background of my primary mentor,
Dr. Peter Walter, in UPR signaling. Learning how information flows between the ER and the extracellular matrix
will reveal exciting new cell biology, result in possible therapeutic applications, and serve as a strong foundation
for an independent research program in my future laboratory.
项目总结
未折叠蛋白反应(UPR)是一个至关重要的信号网络,它负责
维持内质网(ER)的健康。而UPR激活的典型结果是
细胞保护性的、持续的或过度的UPR活性可使细胞走向凋亡性死亡。普遍定期审议的作用是
一种强大的细胞命运控制者,它的失调被认为与一系列人类疾病有关
如糖尿病、神经退行性变、自身免疫性疾病和癌症。普遍定期审议由三个部分组成
相互关联的分支在正常发育过程中表现出时空上不同的激活模式
在疾病中。缺乏对UPR在不同细胞类型和不同类型中如何差异调节的理解
到目前为止,组织已经排除了它在人类患者身上的成功靶向。
UPR中研究最多的分支是由ER膜驻留的双功能激酶-核糖核酸酶介导的
IRE1(肌醇需要酶1)。最近的研究表明,IRE1信号与黏附密切相关,
细胞迁移,以及细胞接收和响应外部提示的能力。细胞信号经常耦合到
局部微环境的机械和化学变化,但IRE1和UPR在
这种耦合才刚刚开始显现。由于UPR组件在几乎所有
细胞类型,上下文相关的调控为观察到的大的
不同组织间UPR信号的差异。然而,当地的哪些属性仍有待确定
环境导致小区依赖于UPR信令以及该信息是如何通信的。
我打算在我做博士后时开发的工具和我的两个人的独特组合资源上进行构建
共同导师来回答这些具有挑战性和激动人心的问题。我将策划精确定义的增长
不同化学成分、孔隙率、硬度和三维组织的基材。然后我将使用
IRE1的化学抑制剂和光遗传激活剂,以确定哪些底物特性使细胞依赖
关于IRE1信令,以及哪些属性使IRE1变得可有可无。IRE1信号转导的底物依赖性
在功能上与一般的UPR激活分开,并映射到UPR内的特定节点。最后,一个
有针对性的方法将确定负责ER之间信息流的特定分子参与者
应力传感器和细胞外环境。
在整个奖项的指导阶段,我将继续磨练我作为一名
独立科学家。与瓦莱丽·韦弗博士的实验室密切合作将为我提供
细胞机械生物学和底物工程,补充了我的主要导师的深刻背景,
彼得·沃尔特博士,UPR信号。了解信息如何在内质网和细胞外基质之间流动
将揭示令人兴奋的新细胞生物学,导致可能的治疗应用,并作为一个坚实的基础
我未来实验室的一个独立研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladislav Belyy其他文献
Vladislav Belyy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladislav Belyy', 18)}}的其他基金
Probing ER stress signaling with orthogonal control of receptor oligomerization
通过受体寡聚化的正交控制探索内质网应激信号传导
- 批准号:
10665915 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Investigating the mechanobiology of ER stress in the context of cell proliferation
研究细胞增殖背景下内质网应激的力学生物学
- 批准号:
10246471 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:














{{item.name}}会员




