The Development and Systematic Evaluation of an AI-Assisted Just-in-Time-Adaptive-Intervention for Improving Child Mental Health
人工智能辅助改善儿童心理健康的及时适应性干预的开发和系统评估
基本信息
- 批准号:10010441
- 负责人:
- 金额:$ 41.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-08 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAgeAggressive behaviorAlcohol or Other Drugs useAlgorithmsAnxietyAppointmentAreaArtificial IntelligenceBehaviorBehavioralBusinessesCaregiversCellular PhoneCessation of lifeChildChild Mental HealthChild RearingChildhoodCoercionComputer softwareConflict (Psychology)CouplesDataData AnalyticsDevelopmentDistalEarly InterventionEconomic BurdenEcosystemEducational CurriculumEffectivenessEmotionsEngineeringEngineering PsychologyEvaluationEventExposure toFamilyFamily RelationshipFosteringGeneral PopulationGoalsHealth Services AccessibilityHealthcareHeart DiseasesHome visitationHourImpairmentIndividualInternetInterventionLearningLifeLinkLongevityMachine LearningMalignant NeoplasmsMeasurementMeasuresMediatingMental DepressionMental HealthMental Health ServicesMethodsModalityModelingMonitorMoodsNational Institute of Mental HealthOutcomeParent-Child RelationsParentsPatternPerformancePersonsPhasePlayPopulations at RiskPreventive InterventionProcessPsychologistPublic HealthRandomized Clinical TrialsReportingResearchResourcesRiskRoleSafetySamplingSchoolsService delivery modelSocietiesStressSymptomsSystemTechnologyTestingTherapeuticTimeTraining and EducationUnderserved PopulationWorkadaptive interventionanalytical methodbarrier to carebasecontagioncost effectivedata sharingdesigndigitalearly childhoodefficacy testingfamily supportflexibilityfoster childhandheld mobile devicehealth care availabilityimprovedin vivo monitoringinnovationinnovative technologiesinterdisciplinary collaborationmachine learning algorithmmachine learning methodmobile computingnovelpersonalized predictionsphysical conditioningpreventprogramsprotective effectpsychologicresearch and developmentresponseservice deliverysocialsymptomatic improvementtechnology developmenttherapeutic effectiveness
项目摘要
PROJECT SUMMARY/ABSTRACT
Early childhood mental health problems constitute a significant public health concern with wide-ranging impacts
on functioning both concurrently and later in life. Although childhood mental health is influenced by a variety of
factors, the quality of relationships with caregivers plays a critical role. Critical, coercive, and conflictual parent-
child interactions have been consistently linked with increased risk of externalizing and internalizing symptoms,
whereas supportive and nurturing relationships have been shown to confer protective effects. Early intervention
of maladaptive family relationships is thus crucial for preventing or offsetting negative developmental trajectories
in at-risk children. A variety of therapeutic methods have been developed and employed to foster positive parent-
child relationships and improve child mental health, including parent training/education, in-person therapy, home
visiting, school curriculums, and web programs. However, systematic obstacles interfere with the accessibility,
generalizability, and acceptability of these traditional appointment- and module-based approaches. Furthermore,
limitations in the family-centered flexibility, individual responsiveness, and broad availability of these services
render them inadequate to address the unique needs of at-risk populations who would benefit from more readily
accessible and inexpensive 24-hour support that is provided in real time and real life—when and where support
is needed most. Not surprisingly, research finds that roughly half of the families who do participate in traditional
appointment- and module-based mental health services fail to show sufficient symptom improvement. Just-in-
time adaptive interventions (JITAIs), in contrast, utilize smartphones, wearables, and artificial intelligence (AI) to
identify and respond to psychological and behavioral processes and contextual events as they unfold in everyday
life. Although JITAIs have the potential to transform the way people receive mental health support, barriers to
their successful, wide-scale implementation remain. Using pilot data collected from smartphones and wearables,
our interdisciplinary team of psychologists and engineers used AI to build machine learning algorithms to detect
psychological states and contextual events, such as ongoing moods and relationship conflict, in couples. In the
current project, we propose developing and testing a JITAI to provide opportune supports to families in dynamic
response to contextual events and shifting psychological states to amplify attachment bonds, regulate emotion,
and intervene in maladaptive parent-child interactional patterns. Building on our prior research, we will (1) build
software to unobtrusively capture real-time data from commercially-available mobile devices, (2) use machine
learning to develop algorithms to automatically monitor psychological and behavioral processes relevant to child
mental health, (3) launch a JITAI to provide as-needed intervention, and (4) carry out a micro-randomized clinical
trial to test the efficacy, acceptability, and safety of our JITAI for decreasing child internalizing and externalizing
symptoms. Our project will contribute to the development of technology ecosystems and service delivery models
with the power to meaningfully transform the accessibility and dynamic responsiveness of mental health care.
项目摘要/摘要
幼儿心理健康问题构成了重要的公共卫生问题,并具有广泛影响
同时和以后的生活。尽管儿童心理健康受到各种各样的影响
因素,与看护者的关系质量起着至关重要的作用。批判,强制和冲突父母 -
儿童互动一直与外在化和内在化症状的风险增加有关,
支持和培育关系已显示出来赋予受保护的影响。早期干预
因此,适应不良的家庭关系对于预防或抵消负面发展轨迹至关重要
在高危儿童中。已经开发并采用了多种治疗方法来促进父母阳性
儿童关系并改善儿童心理健康,包括父母培训/教育,亲自疗法,家庭
访问,学校课程和网络课程。但是,系统的障碍会干扰可访问性,
这些传统任命和基于模块的方法的概括性以及可接受性。此外,
以家庭为中心的灵活性,个人响应能力以及这些服务的广泛可用性的限制
使他们不足以满足高危人群的独特需求,这些人口将从更轻松地受益
实时和现实生活提供的可访问且便宜的24小时支持 -
最需要的。毫不奇怪,研究发现,大约有一半的家庭参加了传统的家庭
基于预约和模块的心理健康服务未能显示出足够的症状改善。刚刚
相反
识别并应对心理和行为过程和上下文事件每天展开
尽管Jitais有可能改变人们获得心理健康支持的方式,但障碍
他们成功的大规模实施仍然存在。使用从智能手机和可穿戴设备收集的试验数据,
我们的心理学家和工程师的跨学科团队使用人工智能来构建机器学习算法来检测
夫妻中的心理状态和情境事件,例如持续的情绪和关系冲突。在
当前的项目,我们建议开发和测试Jitai,以为动态的家庭提供机会支持
对上下文事件的反应和转移心理状态以扩大依恋纽带,调节情感,
并干预适应不良的亲子互动模式。在我们先前的研究的基础上,我们将(1)构建
从商业上可用的移动设备中毫不客气地捕获实时数据的软件,(2)使用机器
学习开发算法以自动监测与儿童相关的心理和行为过程
心理健康,(3)发起Jitai进行急需的干预,(4)进行微型临床
试验以测试Jitai降低儿童内在化和外部化的效率,可接受性和安全性
症状。我们的项目将有助于技术生态系统和服务交付模型的发展
有权改变心理保健的可及性和动态反应能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan S Comer其他文献
Jonathan S Comer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan S Comer', 18)}}的其他基金
The Development and Systematic Evaluation of an AI-Assisted Just-in-Time-Adaptive-Intervention for Improving Child Mental Health
人工智能辅助改善儿童心理健康的即时适应性干预的开发和系统评估
- 批准号:
10212950 - 财政年份:2020
- 资助金额:
$ 41.68万 - 项目类别:
Evaluating the Feasibility of Internet-Delivered Parent-Child Interaction Therapy
评估互联网亲子互动治疗的可行性
- 批准号:
8250325 - 财政年份:2011
- 资助金额:
$ 41.68万 - 项目类别:
Evaluating the Feasibility of Internet-Delivered Parent-Child Interaction Therapy
评估互联网亲子互动治疗的可行性
- 批准号:
8403415 - 财政年份:2011
- 资助金额:
$ 41.68万 - 项目类别:
Evaluating the Feasibility of Internet-Delivered Parent-Child Interaction Therapy
评估互联网亲子互动治疗的可行性
- 批准号:
8823825 - 财政年份:2011
- 资助金额:
$ 41.68万 - 项目类别:
Evaluating the Feasibility of Internet-Delivered Parent-Child Interaction Therapy
评估互联网亲子互动治疗的可行性
- 批准号:
8111016 - 财政年份:2011
- 资助金额:
$ 41.68万 - 项目类别:
Evaluating the Feasibility of Internet-Delivered Parent-Child Interaction Therapy
评估互联网亲子互动治疗的可行性
- 批准号:
8725383 - 财政年份:2011
- 资助金额:
$ 41.68万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 41.68万 - 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 41.68万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 41.68万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 41.68万 - 项目类别: