Molecular mechanism of TRPV1 activation
TRPV1激活的分子机制
基本信息
- 批准号:10009447
- 负责人:
- 金额:$ 35.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-10 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAffectAfferent NeuronsAmberAmino AcidsArginineAsparagineAxonBindingBiologyCalciumCationsCellsChargeChemicalsCodon NucleotidesComplexComputational BiologyComputer ModelsCouplingCryoelectron MicroscopyDataDehydrationDependenceDrug DesignElectrophysiology (science)Environmental Risk FactorFaceFree EnergyHydration statusHydrophobicityHyperalgesiaHypersensitivityImageInvestigationIon ChannelIonsLeadLigand BindingLipid BindingLipidsMechanicsMedicalMembraneMicroscopicMicroscopyModelingMolecularMolecular ConformationMotionMutagenesisNatureNociceptive StimulusPainPeripheralPharmaceutical PreparationsPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhospholipidsProteinsPublishingRegulationResearchRoleRotationSamplingSensorySideSiteSite-Directed MutagenesisStimulusStructureSymptomsSyndromeTRPV1 geneTechniquesTemperatureTestingTherapeuticThermodynamicsUnited StatesVertebral columnWorkalpha helixcarbonyl groupchronic paincofactorconformational conversioncostdesignexperimental studyflexibilityinorganic phosphatemolecular dynamicsnext generationnovelpain signalsensorsmall moleculestructured datasynergismtoolunnatural amino acids
项目摘要
TRPV1 is a non-selective cation channel crucially involved in transduction of nociceptive stimuli
into pain signals. Consequently, inhibition of TRPV1 is one of the major strategies for designing
next generation anti-pain drugs. One of the hallmarks of TRPV1 is its polymodal activation
profile; that is, the ability to detect and, remarkably, integrate the information from diverse
environmental factors (e.g. binding of ligands, pH and temperature) to initiate an action potential
in the peripheral ends of sensory axons. From a molecular point of view, this polymodality is the
result of the allosteric coupling between distinct sites acting as "sensors" for the diverse stimuli
and the activation gate. This project investigates the mechanism of this allosteric coupling using
computational biology (molecular dynamics, free energy calculations), state-of-the-art chemical
biology (non-natural amino acids) and electrophysiology. Three fundamental questions raised
by some of our recent research findings will guide our investigation. Aim 1 addresses the
molecular mechanism of activation of TRPV1. The working hypothesis comes from our recently
published computational work whose predictions have been, in part, already verified
experimentally. We found that hydration and dehydration of four hydrophobic pockets present in
the structure of TRPV1 affect the orientation of a conserved asparagine residue in S6; the
rotation of this side chain is, in turn, responsible for the opening of the pore. We will test this
hypothesis with an extensive set of calculations and experiments. Aim 2 Builds on the
observation that wetting/dewetting phenomena show exquisite temperature dependence and
thus provide a viable mechanism for heat activation. This aim is devoted to the quantitative
characterization of the wetting/dewetting thermodynamics and to the experimental testing of our
model using mutagenesis. Finally, Aim 3 investigates the mechanism underpinning TRPV1
regulation by PIP2. Our preliminary data suggest that this lipid favor a conformational transition
of the pore lining S6 helix from a canonical -helix to a non-canonical conformation containing a
segment of -helix. We will test this hypothesis using the combination of computational
modeling, site directed mutagenesis, whole cell and excised patch electrophysiology.
TRPV 1是一种非选择性阳离子通道,在伤害性刺激的转导中起关键作用
转化成疼痛信号因此,抑制TRPV 1是设计TRPV 1的主要策略之一。
下一代止痛药TRPV 1的特征之一是其多模式激活
配置文件;也就是说,能够检测和,显着,整合来自不同的信息,
引发动作电位的环境因素(如配体结合、pH和温度)
在感觉轴突的外周末端。从分子的角度来看,这种多峰性是
作为不同刺激的“传感器”的不同位点之间的变构偶联的结果
和激活门。本项目研究这种变构偶联的机制,
计算生物学(分子动力学,自由能计算),最先进的化学
生物学(非天然氨基酸)和电生理学。提出的三个基本问题
我们最近的一些研究结果将指导我们的调查。目标1针对
TRPV 1激活的分子机制。工作假设来自我们最近
已发表的计算工作,其预测已经部分得到验证
实验性的我们发现,水化和脱水的四个疏水口袋存在于
TRPV 1的结构影响S6中保守天冬酰胺残基的方向;
该侧链的旋转又导致孔的打开。我们将测试这个
假设与广泛的计算和实验。目标2建立在
观察到润湿/去湿现象显示出精确的温度依赖性,
从而提供了一种可行的热激活机制。这一目标是致力于定量
润湿/去湿热力学的表征和我们的实验测试
使用诱变的模型。最后,目标3研究了TRPV 1的基础机制
PIP 2的规则。我们的初步数据表明,这种脂质有利于构象转变
孔内衬S6螺旋从典型的β-螺旋到含有非典型构象的非典型构象,
螺旋的一部分。我们将使用计算的组合来测试这个假设。
建模、定点诱变、全细胞和切除的贴片电生理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vincenzo Carnevale其他文献
Vincenzo Carnevale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vincenzo Carnevale', 18)}}的其他基金
Regulation of the epithelial Ca2+ channels TRPV6 and TRPV5
上皮 Ca2 通道 TRPV6 和 TRPV5 的调节
- 批准号:
10538702 - 财政年份:2011
- 资助金额:
$ 35.14万 - 项目类别:
Regulation of the epithelial Ca2+ channels TRPV6 and TRPV5
上皮 Ca2 通道 TRPV6 和 TRPV5 的调节
- 批准号:
10797219 - 财政年份:2011
- 资助金额:
$ 35.14万 - 项目类别:
Regulation of the epithelial Ca2+ channels TRPV6 and TRPV5
上皮 Ca2 通道 TRPV6 和 TRPV5 的调节
- 批准号:
10676991 - 财政年份:2011
- 资助金额:
$ 35.14万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 35.14万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 35.14万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 35.14万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 35.14万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 35.14万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 35.14万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 35.14万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 35.14万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 35.14万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 35.14万 - 项目类别:
Research Grant














{{item.name}}会员




