Organic photoredox catalysts as sustainable and cost-effective replacement forprecious metal complexes in light-driven drug synthesis
有机光氧化还原催化剂作为光驱动药物合成中贵金属配合物的可持续且经济有效的替代品
基本信息
- 批准号:10011197
- 负责人:
- 金额:$ 76.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-05 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAminesArchitectureAreaBenchmarkingCatalysisChemistryCouplingDevelopmentElectronsElementsGenerationsHealthHumanHydrophobicityIndustrializationIridiumLifeLightMeasuresMetalsMethodsNobel PrizeOxidantsPalladiumPerformancePharmaceutical PreparationsPharmacologic SubstancePhasePhotochemistryProcessProductionPropertyPublic HealthReactionReducing AgentsResearchRouteRutheniumSafetySavingsSchemeScientistSmall Business Innovation Research GrantSolubilitySolventsStructureSystemTechnologyTherapeuticTimeUnited States National Institutes of Healthabsorptionaqueousbasecatalystchemical reactioncommercializationcostcost effectivedesigndrug candidatedrug developmentdrug discoverydrug synthesisempoweredhydrophilicityimprovedinterestmetal complexnovelnovel therapeuticsphenoxazinequantumresearch and developmentsimulation
项目摘要
PROJECT SUMMARY
The underlying technology developed in this project is photoredox catalysis, an active research area with
growing academic and industrial interest. The impact of photoredox catalysis is expected to exceed palladium
catalysis, the Nobel-prize-winning chemistry that fueled the golden age of drug discovery. Photoredox catalysis
uses light to activate chemical reactions, as opposed to heat in conventional processes. Unique single-electron
radical chemistry is accessed through light absorption enabling new reactivities and unprecedented process
efficiencies e.g. synthesis of drug candidates in fewer steps. Of additional industrial interest, it also permits the
use of low-cost and structurally diverse raw materials in drug development and manufacturing that are otherwise
unreactive in conventional processes. From a public health perspective, photoredox catalysis has the potential
to substantially lower the cost of therapeutics and improve overall human health by enabling accelerated drug
development and reduced drug manufacturing costs.
Completing this NIH SBIR Phase II project will result in the commercialization of high performance organic
photoredox catalyst (PC) products. PCs are the key enabler of photoredox catalysis. However, PCs
predominantly used today are based on iridium and ruthenium, two rare and expensive precious metals that do
not scale beyond R&D usage, posing serious cost and supply issues for industrial use. Organic PCs provide the
solution. Made from abundant elements, they are sustainable and can easily scale to meet industrial demand.
Notably, the organic PCs of interest here were designed by quantum simulations to possess critical properties
resolving many limitations of earlier generations. In many applications, they were shown to match and in some
cases exceed the performance of precious metal PCs. The organic PCs developed here provide the scalable
solution for photoredox catalysis required for drug development and manufacturing.
Specifically, this project integrates three main components pivotal to enabling industrial application of
photoredox catalysis, namely i) organic PCs, ii) photochemical reactions, and iii) photoreactor technology. For
organic PCs (Aims 1 and 2), a number of PC candidates will be synthesized with expanded ranges of reactivities
capable of accommodating many industrial reaction conditions. For photochemical reactions (Aims 3 and 4),
novel and medicinally important reactions (with extended substrate scope) with stated customer interest will be
developed using various classes of organic PCs. Finally, for photoreactor integration (Aim 5), commercially
available photoreactor designs and associated reaction conditions will be identified that maximize the
performance of organic PCs.
项目总结
该项目开发的基础技术是光氧化还原催化,这是一个活跃的研究领域,
学术界和工业界的兴趣与日俱增。预计光氧化还原催化的影响将超过钯
催化,诺贝尔奖获得者化学,推动了药物发现的黄金时代。光氧化还原催化
使用光来激活化学反应,而不是传统工艺中的热。独特的单电子
通过光吸收获得自由基化学,从而实现新的反应和前所未有的过程
效率,例如在更少的步骤中合成候选药物。具有额外的工业利益,它还允许
在药品开发和制造中使用低成本和结构多样化的原材料
在传统工艺中不起反应。从公共健康的角度来看,光氧化还原催化具有潜在的
通过加速药物治疗大幅降低治疗成本并改善整体人类健康
开发和降低药品制造成本。
完成NIH SBIR第二阶段项目将导致高性能有机化合物的商业化
光氧化还原催化剂(PC)产品。PC是光催化氧化还原的关键使能器。然而,个人电脑
今天主要使用的是基于Ir和Ru的,这两种稀有而昂贵的贵金属
规模不能超出研发用途,对工业用途造成严重的成本和供应问题。有机PC提供了
解决方案。它们由丰富的元素制成,是可持续的,可以很容易地扩大规模,以满足工业需求。
值得注意的是,这里感兴趣的有机PC是通过量子模拟设计的,具有关键性质
解决了前几代人的许多限制。在许多应用中,它们被证明是匹配的,在一些应用中
机壳的性能超过了贵金属电脑。这里开发的有机PC提供了可扩展的
药物开发和制造所需的光氧化还原催化溶液。
具体地说,该项目集成了三个主要组件,这些组件对实现
光氧化还原催化,即:1)有机PC,2)光化学反应,3)光反应技术。为
有机PC(目标1和目标2),将合成一些具有更大反应范围的PC候选化合物
能够适应多种工业反应条件。对于光化学反应(目标3和4),
新的和医学上重要的反应(具有扩展的底物范围)将是明确的客户兴趣
使用各种类型的有机PC开发。最后,用于光反应堆集成(目标5),商业化
将确定可用的光反应器设计和相关反应条件,以最大限度地提高
有机PC的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chern-Hooi Lim其他文献
Chern-Hooi Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
More sustainable biocatalytic imine reductions to chiral amines with hydrogen-driven NADPH recycling operated in batch and continuous flow
通过批量和连续流操作的氢驱动 NADPH 回收,更可持续地生物催化亚胺还原为手性胺
- 批准号:
2889869 - 财政年份:2023
- 资助金额:
$ 76.64万 - 项目类别:
Studentship
Organoborane-catalysed approaches to biologically active amines
有机硼烷催化制备生物活性胺的方法
- 批准号:
EP/Y00146X/1 - 财政年份:2023
- 资助金额:
$ 76.64万 - 项目类别:
Research Grant
Transforming Amines into Complex Polycyclic Molecules and Bioactive Natural Products
将胺转化为复杂的多环分子和生物活性天然产物
- 批准号:
2247651 - 财政年份:2023
- 资助金额:
$ 76.64万 - 项目类别:
Standard Grant
Ti-catalyzed cascading hydroaminoalkylation as a route to complex functionalized amines
Ti 催化级联氢氨基烷基化作为制备复杂官能化胺的途径
- 批准号:
10750347 - 财政年份:2023
- 资助金额:
$ 76.64万 - 项目类别:
New Photocatalytic C-C Bond-Forming Reactivity of Unprotected Primary Amines
未受保护伯胺的新光催化 C-C 键形成反应
- 批准号:
EP/X026566/1 - 财政年份:2023
- 资助金额:
$ 76.64万 - 项目类别:
Research Grant
Nickel Cross-Coupling Cascades with α-Heteroatom Radicals to Prepare Sterically Hindered Alcohols and Amines
镍与α-杂原子自由基交叉偶联级联制备位阻醇和胺
- 批准号:
10604535 - 财政年份:2023
- 资助金额:
$ 76.64万 - 项目类别:
Towards a better understanding of the effect of the pentafluorosulfanyl group on the lipophilicity and acid/base properties of alcohols and amines
更好地了解五氟硫基对醇和胺的亲脂性和酸/碱性质的影响
- 批准号:
571856-2021 - 财政年份:2022
- 资助金额:
$ 76.64万 - 项目类别:
Alliance Grants
Development of Strategies for the Enantioselective Synthesis of Heterocycles and Acyclic Amines
杂环和无环胺对映选择性合成策略的发展
- 批准号:
10656344 - 财政年份:2022
- 资助金额:
$ 76.64万 - 项目类别:
Pd-Catalyzed C(sp3)-H Functionalizations Directed by Free Alcohols and Boc-Protected Amines
由游离醇和 Boc 保护的胺引导的 Pd 催化 C(sp3)-H 官能化
- 批准号:
10606508 - 财政年份:2022
- 资助金额:
$ 76.64万 - 项目类别:














{{item.name}}会员




