The Structural Dynamics of Translation Initiation
翻译起始的结构动力学
基本信息
- 批准号:10011816
- 负责人:
- 金额:$ 33.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-12-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAnti-Bacterial AgentsAntibioticsAntineoplastic AgentsAntiviral AgentsAttentionAutomobile DrivingBase PairingBindingBiochemicalClinicalCollaborationsCollectionComplementComplexCryoelectron MicroscopyDNADevelopmentElectron MicroscopyEnsureEscherichia coliFluorescence MicroscopyFundingGTP BindingGene ExpressionGoalsGuanosineHomologous GeneHumanImageIn VitroInitiator CodonInitiator tRNAIsraelKineticsLabelLaboratoriesLettersLinkMalignant NeoplasmsMediatingMessenger RNAModelingMolecularMolecular ConformationMolecular MedicineMolecular StructureOrganismPathway interactionsPeptide Initiation FactorsPharmaceutical PreparationsPlayPositioning AttributeProcessProtein BiosynthesisProteinsReagentRegulationReportingResolutionRibosomesRoleSaccharomyces cerevisiaeSeriesSignal TransductionSiteStructural ModelsStructureSystemTechniquesTimeTransfer RNATranslatingTranslation InitiationTranslationsVariantViral CancerVirus Diseasesbasecryogenicsexperimental studyfluorescence imagingfluorophorehuman diseasenext generationnovel strategiespathogenpreventpublic health relevancerecruitsingle moleculesingle-molecule FRETsmall moleculetransmission processtumorigenesis
项目摘要
PROJECT SUMMARY
The process through which the two-subunit ribosome assembles at the start codon of an mRNA to
initiate protein synthesis is one of the most fundamental and highly regulated steps of gene expression. As
such, initiation serves as the target of numerous small-molecule antibiotics and cellular pathogens. Moreover,
deregulation of initiation is causally linked to viral infections and tumorigenesis in humans. Given all of this,
studies of the molecular mechanism of initiation hold great promise for the identification and characterization of
mechanistic steps that can serve as targets for the development of next-generation antibiotics and other small-
molecule, anti-viral, and anti-cancer drugs that act by modulating translation initiation.
Despite their promise for molecular medicine, mechanistic studies of initiation remain incredibly
challenging. This is primarily because initiation is an extraordinarily dynamic, multi-step process that proceeds
through a large number of short-lived intermediate states that are very difficult to observe and characterize
using conventional approaches. During initiation, a set of essential initiation factors (IFs) transiently interact
with both ribosomal subunits and a specialized initiator tRNA in order to guide their assembly at the start codon
of the mRNA to be translated. Although evidence suggests that the IFs, ribosomal subunits, and tRNA undergo
functionally important structural rearrangements during this process, very few of these rearrangements have
been directly observed and/or characterized, and for those that have, it has been at very low resolution.
The long-term goals of this project are to use powerful combinations of reagents and techniques that
are uniquely available in our and our collaborators’ laboratories to overcome the challenges associated with
mechanistic studies of initiation. Specifically, we will use state-of-the-art single-molecule fluorescence
microscopy and cryogenic electron microscopy (cryo-EM), including a pioneering, time-resolved cryo-EM
approach developed by our collaborator, Dr. Joachim Frank, to directly observe and characterize the dynamics
of initiation. These studies will be enabled by a new approach that we have developed for introducing
fluorophores into ribosomes at positions that are highly desirable, but that have thus far remained out of reach.
In Aim 1, we will investigate the mechanism through which bacterial IF2 transiently binds to a ribosomal
initiation complex (IC) based on the small, 30S, ribosomal subunit (30S IC); determines whether the 30S IC is
carrying an accurately selected initiator tRNA that is properly base-paired to a correctly selected start codon;
and, if so, recruits and facilitates joining of the large, 50S, ribosomal subunit to the 30S IC. In Aim 2, we will
investigate the mechanism through which bacterial IF3 and IF1 ensure the accuracy with which the start codon
is selected during initiation. In Aim 3, we will extend our studies to investigate the mechanism of eukaryotic
translation initiation, focusing our attention on eukaryotic-specific aspects of the mechanism through which the
eukaryotic homolog of IF2, eukaryotic IF5B (eIF5B), regulates subunit joining during eukaryotic initiation.
项目摘要
双亚基核糖体在mRNA起始密码子处组装,
启动蛋白质合成是基因表达的最基本和高度调节的步骤之一。作为
这种起始作用是许多小分子抗生素和细胞病原体的靶点。此外,委员会认为,
起始的失调与人类的病毒感染和肿瘤发生有因果关系。考虑到这一切,
引发的分子机制的研究为鉴定和表征
可以作为下一代抗生素和其他小分子抗生素开发的目标的机械步骤,
分子、抗病毒和抗癌药物,其通过调节翻译起始起作用。
尽管他们的承诺,分子医学,机制的研究启动仍然令人难以置信的
挑战性这主要是因为启蒙是一个非常动态的、多步骤的过程,
通过大量难以观察和表征的短暂中间状态
使用传统的方法。在启动过程中,一组必需的启动因子(IF)瞬时相互作用
与核糖体亚单位和一个专门的起始tRNA,以指导他们的装配在起始密码子
要翻译的mRNA。虽然有证据表明,IFs,核糖体亚基和tRNA经历了
在这个过程中,功能上重要的结构重排,这些重排中很少有
被直接观察和/或表征,对于那些,它一直在非常低的分辨率。
该项目的长期目标是使用强大的试剂和技术组合,
在我们和我们的合作者的实验室中是独一无二的,
启动机制研究。具体来说,我们将使用最先进的单分子荧光
显微镜和低温电子显微镜(cryo-EM),包括开创性的时间分辨cryo-EM
由我们的合作者Joachim Frank博士开发的方法,直接观察和表征动态
开始。这些研究将通过我们开发的新方法来实现,
荧光团进入核糖体的位置是非常可取的,但迄今为止仍然遥不可及。
在目标1中,我们将研究细菌IF 2瞬时结合核糖体的机制。
基于小的30 S核糖体亚基(30 S IC)的起始复合物(IC);确定30 S IC是否是
携带与正确选择的起始密码子正确碱基配对的准确选择的起始tRNA;
如果是这样,则募集并促进50 S核糖体大亚基与30 S IC的连接。在目标2中,我们将
研究细菌IF 3和IF 1确保起始密码子准确性的机制,
在启动时被选中。在目标3中,我们将扩展我们的研究,以探讨真核生物的机制,
翻译启动,把我们的注意力集中在真核生物的具体方面的机制,通过该机制,
IF 2的真核同源物,真核IF 5 B(eIF 5 B),在真核起始期间调节亚基连接。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruben L Gonzalez其他文献
Ruben L Gonzalez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruben L Gonzalez', 18)}}的其他基金
Dynamics and mechanism of sodium-dependent carboxylate transporters
钠依赖性羧酸转运蛋白的动力学和机制
- 批准号:
10577283 - 财政年份:2023
- 资助金额:
$ 33.52万 - 项目类别:
The mechanism and regulation of mRNA recruitment during eukaryotic translation initiation
真核翻译起始过程中mRNA招募的机制和调控
- 批准号:
10578362 - 财政年份:2022
- 资助金额:
$ 33.52万 - 项目类别:
Combined Optical Tweezers-Fluorescence Super-Resolution Microscope for Single-Molecule Biophysical Studies
用于单分子生物物理研究的光镊-荧光超分辨率组合显微镜
- 批准号:
10177000 - 财政年份:2021
- 资助金额:
$ 33.52万 - 项目类别:
The structural dynamics of ribosomal frameshifting and ribosome rescue
核糖体移码和核糖体拯救的结构动力学
- 批准号:
10377976 - 财政年份:2020
- 资助金额:
$ 33.52万 - 项目类别:
The structural dynamics of ribosomal frameshifting and ribosome rescue
核糖体移码和核糖体拯救的结构动力学
- 批准号:
10578684 - 财政年份:2020
- 资助金额:
$ 33.52万 - 项目类别:
Studies of Riboswitch-Mediated Transcriptional Control Using Single-Molecule Fiel
利用单分子场进行核糖开关介导的转录控制的研究
- 批准号:
8695928 - 财政年份:2014
- 资助金额:
$ 33.52万 - 项目类别:
Studies of Riboswitch-Mediated Transcriptional Control Using Single-Molecule Fiel
利用单分子场进行核糖开关介导的转录控制的研究
- 批准号:
8860202 - 财政年份:2014
- 资助金额:
$ 33.52万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Research Grant














{{item.name}}会员




