The Structural Dynamics of Translation Initiation
翻译起始的结构动力学
基本信息
- 批准号:10011816
- 负责人:
- 金额:$ 33.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-12-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAnti-Bacterial AgentsAntibioticsAntineoplastic AgentsAntiviral AgentsAttentionAutomobile DrivingBase PairingBindingBiochemicalClinicalCollaborationsCollectionComplementComplexCryoelectron MicroscopyDNADevelopmentElectron MicroscopyEnsureEscherichia coliFluorescence MicroscopyFundingGTP BindingGene ExpressionGoalsGuanosineHomologous GeneHumanImageIn VitroInitiator CodonInitiator tRNAIsraelKineticsLabelLaboratoriesLettersLinkMalignant NeoplasmsMediatingMessenger RNAModelingMolecularMolecular ConformationMolecular MedicineMolecular StructureOrganismPathway interactionsPeptide Initiation FactorsPharmaceutical PreparationsPlayPositioning AttributeProcessProtein BiosynthesisProteinsReagentRegulationReportingResolutionRibosomesRoleSaccharomyces cerevisiaeSeriesSignal TransductionSiteStructural ModelsStructureSystemTechniquesTimeTransfer RNATranslatingTranslation InitiationTranslationsVariantViral CancerVirus Diseasesbasecryogenicsexperimental studyfluorescence imagingfluorophorehuman diseasenext generationnovel strategiespathogenpreventpublic health relevancerecruitsingle moleculesingle-molecule FRETsmall moleculetransmission processtumorigenesis
项目摘要
PROJECT SUMMARY
The process through which the two-subunit ribosome assembles at the start codon of an mRNA to
initiate protein synthesis is one of the most fundamental and highly regulated steps of gene expression. As
such, initiation serves as the target of numerous small-molecule antibiotics and cellular pathogens. Moreover,
deregulation of initiation is causally linked to viral infections and tumorigenesis in humans. Given all of this,
studies of the molecular mechanism of initiation hold great promise for the identification and characterization of
mechanistic steps that can serve as targets for the development of next-generation antibiotics and other small-
molecule, anti-viral, and anti-cancer drugs that act by modulating translation initiation.
Despite their promise for molecular medicine, mechanistic studies of initiation remain incredibly
challenging. This is primarily because initiation is an extraordinarily dynamic, multi-step process that proceeds
through a large number of short-lived intermediate states that are very difficult to observe and characterize
using conventional approaches. During initiation, a set of essential initiation factors (IFs) transiently interact
with both ribosomal subunits and a specialized initiator tRNA in order to guide their assembly at the start codon
of the mRNA to be translated. Although evidence suggests that the IFs, ribosomal subunits, and tRNA undergo
functionally important structural rearrangements during this process, very few of these rearrangements have
been directly observed and/or characterized, and for those that have, it has been at very low resolution.
The long-term goals of this project are to use powerful combinations of reagents and techniques that
are uniquely available in our and our collaborators’ laboratories to overcome the challenges associated with
mechanistic studies of initiation. Specifically, we will use state-of-the-art single-molecule fluorescence
microscopy and cryogenic electron microscopy (cryo-EM), including a pioneering, time-resolved cryo-EM
approach developed by our collaborator, Dr. Joachim Frank, to directly observe and characterize the dynamics
of initiation. These studies will be enabled by a new approach that we have developed for introducing
fluorophores into ribosomes at positions that are highly desirable, but that have thus far remained out of reach.
In Aim 1, we will investigate the mechanism through which bacterial IF2 transiently binds to a ribosomal
initiation complex (IC) based on the small, 30S, ribosomal subunit (30S IC); determines whether the 30S IC is
carrying an accurately selected initiator tRNA that is properly base-paired to a correctly selected start codon;
and, if so, recruits and facilitates joining of the large, 50S, ribosomal subunit to the 30S IC. In Aim 2, we will
investigate the mechanism through which bacterial IF3 and IF1 ensure the accuracy with which the start codon
is selected during initiation. In Aim 3, we will extend our studies to investigate the mechanism of eukaryotic
translation initiation, focusing our attention on eukaryotic-specific aspects of the mechanism through which the
eukaryotic homolog of IF2, eukaryotic IF5B (eIF5B), regulates subunit joining during eukaryotic initiation.
项目总结
双亚单位核糖体在信使核糖核酸的起始密码子上组装成
启动蛋白质合成是基因表达最基本、最受调控的步骤之一。AS
这样的启动是许多小分子抗生素和细胞病原体的靶标。此外,
解除对启动的管制与人类的病毒感染和肿瘤发生有因果关系。考虑到这一切,
研究引发的分子机制对鉴定和表征具有重要意义。
可以作为下一代抗生素和其他小型抗生素开发目标的机械性步骤
通过调节翻译启动起作用的分子、抗病毒和抗癌药物。
尽管他们对分子医学充满希望,但启动的机制研究仍然令人难以置信
很有挑战性。这主要是因为启动是一个非常动态的、多步骤的过程,
通过大量很难观察和表征的短暂中间状态
使用传统的方法。在启动过程中,一组基本启动因子(IF)短暂地相互作用
具有核糖体亚基和专门的启动子tRNA,以引导它们在起始密码子上组装
要翻译的信使核糖核酸。尽管有证据表明IF、核糖体亚基和tRNA经历了
在这一过程中,这些结构调整中很少有
被直接观察和/或表征的,而对于那些已经被观察和/或表征的,其分辨率一直很低。
该项目的长期目标是使用强大的试剂和技术组合,
在我们和我们的合作者的实验室中独一无二地提供,以克服与
启蒙的机理研究。具体来说,我们将使用最先进的单分子荧光
显微镜和低温电子显微镜(CRYO-EM),包括开创性的、时间分辨的低温电子显微镜
我们的合作者约阿希姆·弗兰克博士开发了一种直接观察和表征动力学的方法
关于入会的。这些研究将通过我们开发的一种新方法来实现
荧光团进入核糖体的位置是非常可取的,但到目前为止还达不到。
在目标1中,我们将研究细菌if2与核糖体瞬时结合的机制。
以小的30S核糖体亚基为基础的起始复合体(IC);决定30S IC是否
携带与正确选择的起始密码子正确碱基配对的准确选择的启动子tRNA;
如果是这样的话,招募并促进50s的大核糖体亚基与30s IC的连接。在目标2中,我们将
探讨细菌IF3和IF1确保起始密码子准确性的机制
在启动过程中被选中。在目标3中,我们将扩展我们的研究,以探索真核生物的机制。
翻译启动,将我们的注意力集中在真核生物特有的机制方面,通过这种机制
IF2的真核同源物,真核IF5B(EIF5B),在真核启动过程中调节亚基的连接。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruben L Gonzalez其他文献
Ruben L Gonzalez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruben L Gonzalez', 18)}}的其他基金
Dynamics and mechanism of sodium-dependent carboxylate transporters
钠依赖性羧酸转运蛋白的动力学和机制
- 批准号:
10577283 - 财政年份:2023
- 资助金额:
$ 33.52万 - 项目类别:
The mechanism and regulation of mRNA recruitment during eukaryotic translation initiation
真核翻译起始过程中mRNA招募的机制和调控
- 批准号:
10578362 - 财政年份:2022
- 资助金额:
$ 33.52万 - 项目类别:
Combined Optical Tweezers-Fluorescence Super-Resolution Microscope for Single-Molecule Biophysical Studies
用于单分子生物物理研究的光镊-荧光超分辨率组合显微镜
- 批准号:
10177000 - 财政年份:2021
- 资助金额:
$ 33.52万 - 项目类别:
The structural dynamics of ribosomal frameshifting and ribosome rescue
核糖体移码和核糖体拯救的结构动力学
- 批准号:
10377976 - 财政年份:2020
- 资助金额:
$ 33.52万 - 项目类别:
The structural dynamics of ribosomal frameshifting and ribosome rescue
核糖体移码和核糖体拯救的结构动力学
- 批准号:
10578684 - 财政年份:2020
- 资助金额:
$ 33.52万 - 项目类别:
Studies of Riboswitch-Mediated Transcriptional Control Using Single-Molecule Fiel
利用单分子场进行核糖开关介导的转录控制的研究
- 批准号:
8695928 - 财政年份:2014
- 资助金额:
$ 33.52万 - 项目类别:
Studies of Riboswitch-Mediated Transcriptional Control Using Single-Molecule Fiel
利用单分子场进行核糖开关介导的转录控制的研究
- 批准号:
8860202 - 财政年份:2014
- 资助金额:
$ 33.52万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.52万 - 项目类别:
Research Grant














{{item.name}}会员




