A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
基本信息
- 批准号:10039384
- 负责人:
- 金额:$ 9.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-17 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAwardBig DataBindingBiochemistryBiological AssayBiological ProcessBiophysicsBrainChIP-seqChromatinCommunitiesComputer softwareComputing MethodologiesDataData ScientistDatabasesDependenceDevelopmentDimensionsDiseaseDistalElementsEnhancersEntropyEpigenetic ProcessEventGaussian modelGene Expression RegulationGenesGeneticGenetic RiskGenetic TranscriptionGenetic VariationGenomeGenomicsHeritabilityHeterogeneityHumanIncidenceIndividualKnowledgeLearningLinkMachine LearningMapsMental disordersMentorshipMethodologyMethodsModelingMolecularNucleic Acid Regulatory SequencesPatientsPatternPhenotypePopulationPrefrontal CortexProteinsPsychiatric DiagnosisRegulator GenesRegulatory ElementReporterReportingResearchResearch PersonnelResolutionResourcesRisk FactorsSamplingScanningScoring MethodShapesSignal TransductionTechnologyTrainingTraining ProgramsTranscriptional RegulationUniversitiesUntranslated RNAVariantWorkbasecareer developmentcell typedeep learningdisorder riskepigenomeexperienceexperimental studyfunctional genomicsgenetic profilinggenetic variantgenome-widegenomic datagenomic locusgenomic profilesinsightmachine learning methodmultimodalitymultiple omicsneurogeneticsneuropsychiatric disordernew therapeutic targetnovelnovel sequencing technologyopen sourceprogramspromoterrecruitresearch and developmentrisk varianttherapeutic targettranscription factortranscriptomicsweb services
项目摘要
PROJECT ABSTRACT
The incidence of diagnosed psychiatric disorders has been increasing for decades,
leaving millions of afflicted individuals. Despite the high heritability, their underlying molecular
mechanisms remain elusive. Most risk loci are located in noncoding genomic elements without
direct effects on protein products. Comprehensive functional annotation and variant impact
quantification are essential to provide new molecular insights and discover therapeutic targets.
Recent advances in novel sequencing technologies and community efforts to share
genomic data provide unprecedented opportunities to understand how genetic variants contribute
to psychiatric diseases. This application describes the development of integrative strategies and
machine learning methods to combine novel assays (such as STARR-seq) with population-scale
genomic profiles to elucidate the genetic regulatory grammar in the human prefrontal cortex (PFC)
and to prioritize genetic variants in psychiatric disorders. Specifically, we will (1) dissect the cis-
regulatory landscape of the PFC using population-scale epigenetics data, (2) construct multi-
model gene regulatory networks by linking distal cis-regulatory elements to genes using chromatin
co-variability analyses, (3) integrate genetic, epigenetic, and transcriptional data to identify key
transcription factors and variants that contribute to psychiatric disorders. Distinct from existing
efforts focusing on one genome, this proposed work presents a truly novel big-data approach for
both modeling gene regulation and investigating disease-risk factors by incorporating
heterogeneous multi-omics profiles from hundreds of individuals. The resultant comprehensive
list of cis-regulatory elements will expand the number of known functional regions in the human
brain by at least an order. We will release our methods and resources in the form of web services,
distributed open-source software, and annotation databases, which will also benefit other
investigators exploring the genetic underpinnings of neuropsychiatric disorders.
In addition to its scientific content, this application proposes a comprehensive training
program for preparing an independent investigator in computational genomics and neurogenetics.
This training will take place at Yale University (in the Dept. of Molecular Biophysics and
Biochemistry) under the mentorship of Prof. Mark Gerstein (functional genomics), Prof. Nenad
Sestan (neurogenetics), and Prof. Hongyu Zhao (statistical genetics and machine learning). A
committee of experienced psychiatric disease experts and data scientists will also provide advice
on both scientific research and career development.
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JING ZHANG其他文献
JING ZHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JING ZHANG', 18)}}的其他基金
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
- 批准号:
10698166 - 财政年份:2022
- 资助金额:
$ 9.43万 - 项目类别:
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
- 批准号:
10515457 - 财政年份:2022
- 资助金额:
$ 9.43万 - 项目类别:
A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
- 批准号:
10431884 - 财政年份:2020
- 资助金额:
$ 9.43万 - 项目类别:
A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
- 批准号:
10219797 - 财政年份:2020
- 资助金额:
$ 9.43万 - 项目类别:
A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
- 批准号:
10640918 - 财政年份:2020
- 资助金额:
$ 9.43万 - 项目类别:
相似海外基金
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
- 批准号:
2315247 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Creating climate-resilient opportunities for plant systems (NC)
NSF 发动机开发奖:为工厂系统创造气候适应机会 (NC)
- 批准号:
2315399 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Cooperative Agreement
International Partnering Award: Using AI to assess senescence and mitochondrial morphology in calcifying VSMCs
国际合作奖:利用人工智能评估钙化 VSMC 的衰老和线粒体形态
- 批准号:
BB/Y513982/1 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Durham University
2024 年开放访问区块奖 - 杜伦大学
- 批准号:
EP/Z531480/1 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Goldsmiths College
2024 年开放获取区块奖 - 金史密斯学院
- 批准号:
EP/Z531509/1 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
- 批准号:
EP/Z53156X/1 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Research Grant
Open Access Block Award 2024 - London School of Economics & Pol Sci
2024 年开放获取区块奖 - 伦敦政治经济学院
- 批准号:
EP/Z531625/1 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Oxford Brookes University
2024 年开放获取区块奖 - 牛津布鲁克斯大学
- 批准号:
EP/Z531728/1 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
- 批准号:
EP/Z531844/1 - 财政年份:2024
- 资助金额:
$ 9.43万 - 项目类别:
Research Grant