A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
基本信息
- 批准号:10640918
- 负责人:
- 金额:$ 11.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-17 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAffectAutopsyAwardBig DataBindingBiochemistryBiological AssayBiological ProcessBiophysicsBrainChIP-seqChromatinCommunitiesComputer softwareComputing MethodologiesDataData ScientistDatabasesDependenceDevelopmentDimensionsDiseaseDistalElementsEnhancersEntropyEpigenetic ProcessEventGene Expression RegulationGenesGeneticGenetic RiskGenetic TranscriptionGenetic VariationGenomeGenomicsHeritabilityHeterogeneityHumanIncidenceIndividualKnowledgeLearningLinkMachine LearningMapsMental disordersMentorshipMethodsModelingMolecularNucleic Acid Regulatory SequencesPatientsPatternPhenotypePopulationPrefrontal CortexProteinsPsychiatric DiagnosisRegulatory ElementReporterReportingResearchResearch PersonnelResolutionResourcesRisk FactorsSamplingScanningScoring MethodShapesSignal TransductionTechnologyTrainingTraining ProgramsTranscriptional RegulationUniversitiesUntranslated RNAVariantWorkcareer developmentcell typedeep learningdisorder riskepigenomeexperienceexperimental studyfunctional genomicsgene regulatory networkgenetic variantgenome-widegenomic datagenomic locusgenomic profilesinsightmachine learning methodmultimodalitymultiple omicsneurogeneticsneuropsychiatric disordernew therapeutic targetnovelnovel sequencing technologyopen sourceprogramspromoterrecruitresearch and developmentrisk varianttherapeutic targettranscription factortranscriptomicsweb services
项目摘要
PROJECT ABSTRACT
The incidence of diagnosed psychiatric disorders has been increasing for decades,
leaving millions of afflicted individuals. Despite the high heritability, their underlying molecular
mechanisms remain elusive. Most risk loci are located in noncoding genomic elements without
direct effects on protein products. Comprehensive functional annotation and variant impact
quantification are essential to provide new molecular insights and discover therapeutic targets.
Recent advances in novel sequencing technologies and community efforts to share
genomic data provide unprecedented opportunities to understand how genetic variants contribute
to psychiatric diseases. This application describes the development of integrative strategies and
machine learning methods to combine novel assays (such as STARR-seq) with population-scale
genomic profiles to elucidate the genetic regulatory grammar in the human prefrontal cortex (PFC)
and to prioritize genetic variants in psychiatric disorders. Specifically, we will (1) dissect the cis-
regulatory landscape of the PFC using population-scale epigenetics data, (2) construct multi-
model gene regulatory networks by linking distal cis-regulatory elements to genes using chromatin
co-variability analyses, (3) integrate genetic, epigenetic, and transcriptional data to identify key
transcription factors and variants that contribute to psychiatric disorders. Distinct from existing
efforts focusing on one genome, this proposed work presents a truly novel big-data approach for
both modeling gene regulation and investigating disease-risk factors by incorporating
heterogeneous multi-omics profiles from hundreds of individuals. The resultant comprehensive
list of cis-regulatory elements will expand the number of known functional regions in the human
brain by at least an order. We will release our methods and resources in the form of web services,
distributed open-source software, and annotation databases, which will also benefit other
investigators exploring the genetic underpinnings of neuropsychiatric disorders.
In addition to its scientific content, this application proposes a comprehensive training
program for preparing an independent investigator in computational genomics and neurogenetics.
This training will take place at Yale University (in the Dept. of Molecular Biophysics and
Biochemistry) under the mentorship of Prof. Mark Gerstein (functional genomics), Prof. Nenad
Sestan (neurogenetics), and Prof. Hongyu Zhao (statistical genetics and machine learning). A
committee of experienced psychiatric disease experts and data scientists will also provide advice
on both scientific research and career development.
项目摘要
几十年来,诊断出的精神疾病的发病率一直在增加,
留下了数百万受折磨的人尽管遗传率很高,但其潜在的分子
机制仍然难以捉摸。大多数风险基因座位于非编码基因组元件中,
直接影响蛋白质产品。全面的功能注释和变体影响
定量分析对于提供新的分子见解和发现治疗靶点至关重要。
新测序技术的最新进展和社区努力分享
基因组数据提供了前所未有的机会,以了解遗传变异如何贡献
精神疾病。本申请描述了综合战略的发展,
机器学习方法将新的测定(如STARR-seq)与群体规模结合起来,联合收割机
基因组图谱,以阐明人类前额叶皮层(PFC)的遗传调控语法
并优先考虑精神疾病的遗传变异。具体来说,我们将(1)解剖顺-
使用群体规模表观遗传学数据的PFC的监管景观,(2)构建多个
通过使用染色质将远端顺式调控元件连接到基因来模拟基因调控网络
协变分析,(3)整合遗传、表观遗传和转录数据,以确定关键的
转录因子和变异导致精神疾病。区别于现有的
专注于一个基因组的努力,这项拟议的工作提出了一个真正新颖的大数据方法,
通过整合基因调控模型和研究疾病风险因素,
来自数百个个体的异质多组学图谱。由此产生的全面
顺式调节元件的列表将扩大人类中已知功能区域的数量。
大脑至少有一个命令。我们将以Web服务的形式发布我们的方法和资源,
分布式开源软件和注释数据库,这也将有利于其他
研究人员正在探索神经精神疾病的遗传基础。
除了其科学的内容,这一申请提出了一个全面的培训,
程序准备在计算基因组学和神经遗传学的独立调查员。
该培训将在耶鲁大学(系内)进行。分子生物物理学和
Mark Gerstein教授(功能基因组学)、Nenad教授
Sestan(神经遗传学)和Hongyu Zhao教授(统计遗传学和机器学习)。一
经验丰富的精神疾病专家和数据科学家委员会也将提供建议
科学研究和职业发展。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
One-Shot Learning With Attention-Guided Segmentation in Cryo-Electron Tomography.
- DOI:10.3389/fmolb.2020.613347
- 发表时间:2020
- 期刊:
- 影响因子:5
- 作者:Zhou B;Yu H;Zeng X;Yang X;Zhang J;Xu M
- 通讯作者:Xu M
STARRPeaker: uniform processing and accurate identification of STARR-seq active regions.
- DOI:10.1186/s13059-020-02194-x
- 发表时间:2020-12-08
- 期刊:
- 影响因子:12.3
- 作者:Lee D;Shi M;Moran J;Wall M;Zhang J;Liu J;Fitzgerald D;Kyono Y;Ma L;White KP;Gerstein M
- 通讯作者:Gerstein M
CryoETGAN: Cryo-Electron Tomography Image Synthesis via Unpaired Image Translation.
- DOI:10.3389/fphys.2022.760404
- 发表时间:2022
- 期刊:
- 影响因子:4
- 作者:Wu X;Li C;Zeng X;Wei H;Deng HW;Zhang J;Xu M
- 通讯作者:Xu M
SCAN-IT: Domain segmentation of spatial transcriptomics images by graph neural network.
- DOI:
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Cang Z;Ning X;Nie A;Xu M;Zhang J
- 通讯作者:Zhang J
Venus: An efficient virus infection detection and fusion site discovery method using single-cell and bulk RNA-seq data.
- DOI:10.1371/journal.pcbi.1010636
- 发表时间:2022-10
- 期刊:
- 影响因子:4.3
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JING ZHANG其他文献
JING ZHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JING ZHANG', 18)}}的其他基金
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
- 批准号:
10698166 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
- 批准号:
10515457 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
- 批准号:
10431884 - 财政年份:2020
- 资助金额:
$ 11.3万 - 项目类别:
A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
- 批准号:
10219797 - 财政年份:2020
- 资助金额:
$ 11.3万 - 项目类别:
A big data approach to explore epigenetic heterogeneity and interpret noncoding variants for psychiatric disorders
探索表观遗传异质性并解释精神疾病非编码变异的大数据方法
- 批准号:
10039384 - 财政年份:2020
- 资助金额:
$ 11.3万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 11.3万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
Studentship