Evolutionary innovation to preserve zygotic genome integrity

保持合子基因组完整性的进化创新

基本信息

  • 批准号:
    10040108
  • 负责人:
  • 金额:
    $ 24.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Chromosomal abnormalities, particularly aneuploidies, are prevalent during the earliest cell cycles in pre- implantation human embryos. The high incidence of mitotic errors is puzzling – stable chromosome transmission represents a fundamental process ostensibly honed by natural selection. However, many of the underlying proteins, including centromere proteins that direct chromosome segregation and telomere proteins that preserve chromosome ends, evolve rapidly under positive selection. This paradox of conserved cellular processes supported by unconserved machinery suggests recurrent innovation. A proposed but largely untested resolution to this paradox is that rapid evolution of repetitive DNA drives the evolution of proteins that package this DNA. Under this co-evolution model, constantly changing repetitive DNA compromises viability and/or fertility, spurring adaptation at chromosomal proteins that preserve genome stability. Data from non- mammalian model organisms implicates the very earliest embryonic cycles. Here we consider the distinct challenges posed by sperm-deposited DNA, which enters the egg highly compact and inert and is transformed into competent chromosomes by maternal proteins. We hypothesize that maternally-deposited proteins evolve rapidly to remodel and establish centromeres and telomeres on ever-evolving paternal repetitive DNA. Using mouse as a mammalian model system, we exploit both natural variation in Mus centromeric and telomeric repetitive DNA content and divergent maternal proteins from M. musculus relatives to study the cell biological consequences of ‘mismatched’ paternal repetitive DNA and maternally provisioned proteins. Our hypothesis predicts that maternally-provisioned proteins adapted to repetitive DNA in one species will not function optimally when confronted with divergent paternal centromeres and telomeres of another species. Our specific aims are to (1) establish an in vitro fertilization (IVF) scheme to systematically vary the paternal DNA and (2) replace rapidly-evolving maternal proteins with diverged versions from related species. In each case, we will determine the consequences for centromere and telomere packaging and embryonic genome stability. This innovative, evolution-guided functional approach reveals otherwise invisible genetic and epigenetic determinants of early embryonic viability. Our overall goal is to establish an integrated experimental system that allows us to challenge diverged, maternally provisioned proteins with paternal genomes of varying repeat number and sequence, providing crucial support for a future R01 that investigates how the zygote restores epigenetic symmetry between essential chromosomal loci that diverge genetically between the maternal and paternal genomes. Defining the centromere and telomere factors at the interface of dynamic evolution with cognate repetitive DNA will expose an underappreciated co-evolutionary process in the pre-implantation embryo. Under this model, the often ignored repetitive DNA composition of paternal and maternal genomes imperils genome stability and transmission, a hallmark of failed human IVF and early pregnancy loss.
染色体异常,特别是非整倍体,普遍存在于早期的细胞周期

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Lampson其他文献

Michael Lampson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Lampson', 18)}}的其他基金

Evolutionary innovation to preserve zygotic genome integrity
保持合子基因组完整性的进化创新
  • 批准号:
    10216317
  • 财政年份:
    2020
  • 资助金额:
    $ 24.3万
  • 项目类别:
Cell Biological mechanisms of centromere drive
着丝粒驱动的细胞生物学机制
  • 批准号:
    10605289
  • 财政年份:
    2017
  • 资助金额:
    $ 24.3万
  • 项目类别:
Cell biological mechanisms of centromere drive
着丝粒驱动的细胞生物学机制
  • 批准号:
    10174942
  • 财政年份:
    2017
  • 资助金额:
    $ 24.3万
  • 项目类别:
Cell biological mechanisms of centromere drive
着丝粒驱动的细胞生物学机制
  • 批准号:
    9892184
  • 财政年份:
    2017
  • 资助金额:
    $ 24.3万
  • 项目类别:
Cell biological mechanisms of centromere drive
着丝粒驱动的细胞生物学机制
  • 批准号:
    10385950
  • 财政年份:
    2017
  • 资助金额:
    $ 24.3万
  • 项目类别:
Cell biological mechanisms of centromere drive
着丝粒驱动的细胞生物学机制
  • 批准号:
    9795484
  • 财政年份:
    2017
  • 资助金额:
    $ 24.3万
  • 项目类别:
Cell Biological mechanisms of centromere drive
着丝粒驱动的细胞生物学机制
  • 批准号:
    10404859
  • 财政年份:
    2017
  • 资助金额:
    $ 24.3万
  • 项目类别:
Cell biology of meiotic drive in mammals
哺乳动物减数分裂驱动的细胞生物学
  • 批准号:
    8557413
  • 财政年份:
    2013
  • 资助金额:
    $ 24.3万
  • 项目类别:
Cell biology of meiotic drive in mammals
哺乳动物减数分裂驱动的细胞生物学
  • 批准号:
    8725709
  • 财政年份:
    2013
  • 资助金额:
    $ 24.3万
  • 项目类别:
Cell biology of meiotic drive in mammals
哺乳动物减数分裂驱动的细胞生物学
  • 批准号:
    9115635
  • 财政年份:
    2013
  • 资助金额:
    $ 24.3万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 24.3万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 24.3万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 24.3万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 24.3万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 24.3万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 24.3万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 24.3万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了