Cell biological mechanisms of centromere drive
着丝粒驱动的细胞生物学机制
基本信息
- 批准号:9892184
- 负责人:
- 金额:$ 4.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesBindingBinding ProteinsBiologicalCell divisionCellsCellular biologyCentromereChromosome SegregationChromosome abnormalityChromosomesConflict (Psychology)DNADNA SequenceDefectDevelopmentEnsureEpigenetic ProcessEukaryotaEvolutionFamilyFemaleFertilityGeneticGenetic MaterialsGenomeGoalsHybridsIndividualInheritedKinetochoresLawsLeadMeiosisModelingMolecular AbnormalityNatural SelectionsOrganismOutcomePopulationPregnancy lossProcessProteinsRegulationRepetitive SequenceReproductive BiologySystemcosteggexperimental studyfascinateinsightmalemouse modelnext generationpressurereproductivereproductive fitnesssegregationsperm cell
项目摘要
The centromere drive hypothesis invokes genetic conflict to explain the paradox that both centromere DNA
sequences and centromere-binding proteins have evolved rapidly, despite highly conserved centromere
function across eukaryotes. Genetic conflict at centromeres is grounded in the asymmetry inherent in female
meiosis I (MI). In this reductionist cell division, one chromosome from each homologous pair remains in the
egg and can be transmitted to the next generation, while the other is degraded in the polar body. Natural
selection strongly favors any allele that can increase its chance of remaining in the egg, in violation of Mendel's
First Law (Law of Segregation). Such biased chromosome segregation in meiosis does occur and is a form of
meiotic drive. The first part of the centromere drive hypothesis is that rapid evolution of centromere DNA is
driven by competition to orient towards the spindle pole that will remain in the egg. The model is that expansion
of repetitive sequences at a centromere leads to formation of a larger kinetochore and preferential retention in
the egg. The second part of the hypothesis explains the evolution of centromere proteins through conflict
between individual centromeres, which expand to gain a reproductive advantage, and the reproductive fitness
of the organism. If differences between centromeres of homologous chromosomes cause defects in male
meiosis, this fertility cost provides selective pressure favoring alleles of centromere-binding proteins that
equalize centromeres and suppress drive by binding independent of sequence. The centromere drive
hypothesis has had a major impact on the centromere field because it provides a conceptual framework for
understanding the evolution of centromere DNA and centromere proteins, but the underlying cell biological
mechanisms are unknown. This proposal addresses three major gaps in our understanding of centromere
drive. First, how does centromere DNA sequence influence centromere function? Centromeres are defined
epigenetically in most organisms, and the contribution of sequence has long been unclear. Second, how is
biased segregation in MI achieved? The mechanism by which one centromere preferentially remains in the egg
is unknown. Third, is there a fertility cost in male meiosis? Direct evidence for this crucial component of the
drive hypothesis is scant. If there is a cost, what is the mechanistic basis? To address these questions, we
have established an experimental system in which we observe drive, using a hybrid mouse model created by
crossing two strains with different centromeres. Genetic conflict has shaped many aspects of our genomes,
and centromeres are a particularly fascinating case because of the implications for non-Mendelian inheritance.
The outcomes of our experiments will provide the first mechanistic insight into the cell biology underlying
centromere drive. With broad consequences for reproductive biology and chromosome evolution, this project
represents a unique contribution to the field of evolutionary cell biology.
着丝粒驱动假说援引遗传冲突来解释着丝粒DNA
尽管着丝粒高度保守,但序列和着丝粒结合蛋白仍迅速进化
在真核生物中发挥作用。着丝粒的遗传冲突是基于女性固有的不对称性
减数分裂I(MI)。在这种还原论的细胞分裂中,来自每一对同源染色体的一条染色体保留在染色体中。
卵中的一种可以传递给下一代,而另一种则在极体中降解。自然
选择强烈倾向于任何可以增加其留在卵子中的机会的等位基因,这违反了孟德尔的理论。
第一法(隔离法)。在减数分裂中,这种偏向性的染色体分离确实发生,并且是一种形式。
减数分裂驱动着丝粒驱动假说的第一部分是着丝粒DNA的快速进化是
在竞争的驱使下朝向留在蛋中的纺锤杆。这个模型是,
在着丝粒上的重复序列导致形成更大的动粒,并优先保留在
鸡蛋假说的第二部分解释了着丝粒蛋白通过冲突的进化
个体的着丝粒,扩张以获得生殖优势,和生殖适合度之间的关系,
生物体。如果同源染色体的着丝粒之间的差异导致男性的缺陷,
在减数分裂中,这种育性代价提供了选择压力,有利于着丝粒结合蛋白的等位基因,
通过独立于序列的结合来均衡着丝粒和抑制驱动。着丝粒驱动
这一假设对着丝粒场产生了重大影响,因为它为以下方面提供了概念框架
了解着丝粒DNA和着丝粒蛋白质的进化,但潜在的细胞生物学
机制不明。这个提议解决了我们对着丝粒理解的三个主要空白
驱动首先,着丝粒DNA序列如何影响着丝粒功能?着丝粒被定义为
在大多数生物体中,表观遗传学上,序列的贡献长期以来一直不清楚。第二,如何
是否实现MI中的偏倚隔离?一个着丝粒优先保留在卵中的机制
不明第三,男性减数分裂是否有生育成本?直接证据表明,
驱力假说是缺乏的。如果有成本的话,其机制基础是什么?为了解决这些问题,我们
我已经建立了一个实验系统,我们观察驱动器,使用杂交小鼠模型,
将两个具有不同着丝粒的菌株杂交。遗传冲突塑造了我们基因组的许多方面,
而着丝粒是一个特别吸引人的例子,因为它暗示了非孟德尔遗传。
我们的实验结果将提供对细胞生物学基础的第一个机械见解
着丝粒驱动该项目对生殖生物学和染色体进化产生了广泛的影响,
代表了对进化细胞生物学领域的独特贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lampson其他文献
Michael Lampson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lampson', 18)}}的其他基金
Evolutionary innovation to preserve zygotic genome integrity
保持合子基因组完整性的进化创新
- 批准号:
10216317 - 财政年份:2020
- 资助金额:
$ 4.49万 - 项目类别:
Evolutionary innovation to preserve zygotic genome integrity
保持合子基因组完整性的进化创新
- 批准号:
10040108 - 财政年份:2020
- 资助金额:
$ 4.49万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 4.49万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 4.49万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 4.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 4.49万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 4.49万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 4.49万 - 项目类别:














{{item.name}}会员




