Robust Delivery of Antimicrobial Peptides

抗菌肽的强力递送

基本信息

  • 批准号:
    10042814
  • 负责人:
  • 金额:
    $ 6.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-10 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary This project explores the development of bicontinuous microemulsions (BEs) as topical drug delivery systems for antimicrobial peptides (AMPs), as an alternative therapy to treat wound infections. This study addresses the missions of both the NIH’s NIBIB and NIAID research programs through: 1) the development of a novel drug delivery technology, and 2) a new approach to combat chronic wound infections exacerbated by antibiotic-resistant microorganisms. Wound infections are a major problem due to the increased occurrence of antibiotic-resistant microorganisms, which are attributable to $20 billion annually in excess health care costs, $35 billion in societal costs, and 8 million days of extended hospitalization stays in the US. AMPs can kill microbial pathogens that cause wound infections (e.g., methicillin-resistant Staphylococcus aureus [MRSA]) through disruption of negatively charged biomembranes, producing pores that allow leakage of cytoplasmic fluids; however, AMPs must be delivered in a highly folded form to be effective and previous studies have not addressed this need. Thus, this study proposes to develop BEs as systems for encapsulation of AMPs in their folded state and delivery to wound surfaces. BEs are optically clear, homogeneous, and thermodynamically stable biomembrane mimetic systems. They possess unique drug-delivery properties compared to other membrane-based systems, including large-volume fractions of water and oil (~40%) that allow co-solubilization of other drugs. Preliminary studies demonstrate that the AMP melittin when encapsulated into BEs can reside in a highly folded state (>90% -helix) and high concentrations (1-10 g/L) are achievable. Several important hypotheses will be tested, including that AMP-loaded BE solutions are effective antimicrobial agents with activity strongly controlled by the extent of AMP folding. The Specific Aims are to 1) demonstrate that four diverse AMPs can be incorporated into several different biocompatible BE systems at high (biologically relevant) concentrations and degrees of folding; 2) show that BEs loaded with AMPs and antiseptic agents such as chlorhexidine (derived in Aim 1) can serve as robust topical preparations for treatment of wound infections. For Aim 1, the relationship between AMP folding and BE properties will be determined through novel methods, including circular dichroism and small-angle neutron scattering. Aim 2 will provide measurements of minimum inhibitory and bactericidal concentration against several representative microorganisms encountered in wounds (including MRSA), cell cytotoxicity (hemolysis) activity and protection of BE-encapsulated AMPs from proteolysis. The results will provide a basis for future clinical applications to use BEs as a drug delivery system for improved activity and/or stability of cell-penetrating peptides. Other applications include adsorption to surfaces of medical devices for antimicrobial coatings and delivery of radiolabeled AMPs for bioimaging.
项目摘要 本项目探索双连续微乳(BES)作为局部给药系统的发展 对于抗菌肽(AMP),作为治疗伤口感染的替代疗法。这项研究解决了 NIH的NIBIB和NIAID研究计划的任务是:1)开发一种新药 提供技术,以及2)一种新的方法来对抗慢性伤口感染,这种感染因 耐抗生素的微生物。伤口感染是一个主要问题,因为 抗药性微生物,这可归因于每年超过200亿美元的医疗保健费用, 350亿美元的社会成本,以及800万天的延长住院日在美国。安培可以致命 引起伤口感染的微生物病原体(例如耐甲氧西林金黄色葡萄球菌[MRSA]) 通过破坏带负电荷的生物膜,产生允许细胞质泄漏的毛孔 液体;然而,AMP必须以高度折叠的形式输送才能有效,而以前的研究还没有 满足了这一需求。因此,本研究建议开发BES作为AMP在其体内的封装系统 折叠状态和传送到伤口表面。BES是光学透明的、均匀的和热力学的 稳定的生物膜模拟系统。与其他药物相比,它们具有独特的药物递送特性 基于膜的系统,包括允许共溶解的大体积分数的水和油(~40%) 其他药物。初步研究表明,AMP蜂毒素被包裹到BES中后可以驻留 在高度折叠状态(>90%-螺旋)和高浓度(1-10g/L)是可以实现的。几个重要的 将检验假设,包括加载AMP的BE溶液是有效的抗菌剂 活性受AMP折叠程度的强烈控制。具体目标是1)证明四个 不同的AMP可以被整合到几个不同的生物兼容的BE系统中(在生物上 相关)浓度和折叠度;2)显示BEs负载AMP和防腐剂 例如洗必泰(在AIM 1中衍生)可作为用于治疗伤口的强效局部制剂 感染。对于目标1,AMP折叠和BE性质之间的关系将通过以下方式确定 新的方法,包括圆二向色性和小角中子散射。AIM 2将提供 几种代表性细菌的最低抑菌浓度和杀菌浓度测定 伤口微生物(包括耐甲氧西林金黄色葡萄球菌)、细胞毒性(溶血)活性和防护 B-E-囊化AMPS的蛋白水解性。这一结果将为今后临床应用提供依据。 使用BES作为药物递送系统,以提高细胞穿透肽的活性和/或稳定性。其他 应用包括对医疗器械表面的抗菌涂层的吸附和输送 用于生物成像的放射性标记AMP。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DOUGLAS G HAYES其他文献

DOUGLAS G HAYES的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DOUGLAS G HAYES', 18)}}的其他基金

Robust Delivery of Antimicrobial Peptides
抗菌肽的强力递送
  • 批准号:
    10187520
  • 财政年份:
    2020
  • 资助金额:
    $ 6.61万
  • 项目类别:
Chemo-Enzymatic Synthesis of Unimolecular Polymeric Micelles for Drug Delivery
用于药物输送的单分子聚合物胶束的化学酶法合成
  • 批准号:
    7415029
  • 财政年份:
    2007
  • 资助金额:
    $ 6.61万
  • 项目类别:
Chemo-Enzymatic Synthesis of Unimolecular Polymeric Micelles for Drug Delivery
用于药物输送的单分子聚合物胶束的化学酶法合成
  • 批准号:
    7253003
  • 财政年份:
    2007
  • 资助金额:
    $ 6.61万
  • 项目类别:

相似海外基金

Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
  • 批准号:
    2901619
  • 财政年份:
    2024
  • 资助金额:
    $ 6.61万
  • 项目类别:
    Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
  • 批准号:
    EP/W027593/2
  • 财政年份:
    2024
  • 资助金额:
    $ 6.61万
  • 项目类别:
    Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 6.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
  • 批准号:
    2871817
  • 财政年份:
    2024
  • 资助金额:
    $ 6.61万
  • 项目类别:
    Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
  • 批准号:
    2903366
  • 财政年份:
    2024
  • 资助金额:
    $ 6.61万
  • 项目类别:
    Studentship
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
  • 批准号:
    2312325
  • 财政年份:
    2023
  • 资助金额:
    $ 6.61万
  • 项目类别:
    Standard Grant
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
  • 批准号:
    23H02303
  • 财政年份:
    2023
  • 资助金额:
    $ 6.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
  • 批准号:
    23KJ0192
  • 财政年份:
    2023
  • 资助金额:
    $ 6.61万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
  • 批准号:
    23H01158
  • 财政年份:
    2023
  • 资助金额:
    $ 6.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
  • 批准号:
    2303933
  • 财政年份:
    2023
  • 资助金额:
    $ 6.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了