Dehydroamino Acids as Stabilizing and Rigidifying Components of Bioactive Peptides and Natural Products: Synthetic, Structural, and Medicinal Studies
脱氢氨基酸作为生物活性肽和天然产物的稳定和硬化成分:合成、结构和药物研究
基本信息
- 批准号:10046403
- 负责人:
- 金额:$ 43.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAmino AcidsAreaBiologicalBiologyCell Membrane PermeabilityChemicalsCollectionComplementDehydrationDevelopmentDiseaseFamilyGoalsHealthHumanKnowledgeMalignant NeoplasmsMethodologyMethodsMissionModificationMolecular ConformationNatural ProductsOutcomePeptide HydrolasesPeptide SynthesisPeptidesPerceptionPeriodicityPharmaceutical ChemistryPharmaceutical PreparationsPharmacologic SubstancePhasePlant ResinsPropertyPublic HealthResearchRoleRouteSolidStructureSulfhydryl CompoundsTestingTherapeuticTherapeutic AgentsUnited States National Institutes of HealthWorkanaloganti-cancerbioactive natural productsdesignhuman diseaseimprovedinnovationpeptide structurephysical propertypromoterprotein protein interactionstereochemistrytool
项目摘要
Project Summary
Dehydroamino acids (AAs) can increase the proteolytic stability of peptides as a result of a rigidifying effect
caused by A1,3 strain that favors folded structures over random coil conformations. These residues should have
great value to medicinal chemists and chemical biologists, but many types of AAs remain unexplored due to
significant synthetic challenges. Accordingly, the objective of this proposal is to devise efficient routes to a range
of AAs and then investigate the structures, stabilities, and potencies of peptides and natural products that
contain them. The hypothesis is that new and efficient synthetic strategies will unlock access to a collection of
AAs that can be used to tune the conformations, physical properties, and bioactivities of peptides. The rationale
for this idea is that expanding the number of available AAs and defining their effects on peptide structure and
function will provide new tools that will enable solutions to significant problems with relevance to human health.
The hypothesis will be tested by pursuing three Specific Aims. Aim 1 involves expanding the realm of available
,-AAs and devising new methods of incorporating them into peptides. Cyclic AAs and fluorinated AAs will
be targeted. The new methodologies will include dehydrations and related eliminations that can be conducted
on a solid support and are compatible with solid-phase peptide synthesis (SPPS). Aim 2 entails determining the
impact of various types of ,-AAs on peptide structure and stability as well as probing medicinal applications
of peptides containing these residues. Secondary structures to be studied include turns, sheets, and helices.
The inclusion of ,-AAs in anticancer peptides and -sheet breaker peptides will be explored. Aim 3 consists
of devising a robust synthesis of AAs containing the -thioenamide moiety and using it as part of an effort to
determine the stereochemistry of the thioviridamide macrocycle. The thioviridamides are potent and selective
anticancer peptides that contain the AA aminovinylcysteine. This residue will be constructed using an oxidative
decarboxylative elimination that will be employed to construct 16 candidate structures of the thioviridamide
macrocycle using SPPS. The approach is innovative because it upends the conventional wisdom stating that
AAs are poorly suited to incorporation into bioactive peptides due to the perception that they are reactive to
biological nucleophiles such as thiols. The significance of the proposed research lies in its ability to facilitate the
use of peptides that contain AAs to solve important medicinal chemistry and chemical biology problems. Such
studies could include the design of proteolytically stable peptides that are capable of disrupting protein–protein
interactions with relevance to human diseases or the development of potent and stable analogs of the
thioviridamides. This project is envisioned to raise the profile of AAs, which have been previously underutilized.
项目摘要
脱氢氨基酸(-AAs)由于具有刚性作用,可以增加多肽的蛋白水解性
由A1,3菌株引起的,这种菌株更倾向于折叠结构而不是随机卷曲构象。这些残留物应该有
对药物化学家和化学生物学家来说很有价值,但由于以下原因,许多类型的AA仍未被开发
重大的合成挑战。因此,这项提议的目标是设计有效的路线到达某一范围
然后研究多肽和天然产物的结构、稳定性和效力,这些多肽和天然产物是AAs的
遏制他们。假设是,新的和有效的合成策略将打开对一系列
氨基酸,可用于调节多肽的构象、物理性质和生物活性。其基本原理是
因为这个想法是,扩大可用的AA的数量,并定义它们对肽结构和
这一功能将提供新的工具,使解决与人类健康相关的重大问题成为可能。
这一假设将通过追求三个具体目标来检验。目标1涉及扩大可用的范围
,-氨基酸,并设计将它们结合到多肽中的新方法。环状AA和氟化AA将
成为靶子。新的方法将包括脱水和可以进行的相关消除
并与固相多肽合成(SPPS)兼容。目标2需要确定
不同类型,-氨基酸对多肽结构和稳定性的影响及其药用价值探讨
含有这些残基的多肽。要研究的二级结构包括转弯、片状和螺旋。
将探索,-氨基酸在抗癌多肽和-折叠破碎肽中的包含性。目标3包括
设计了一种含有-硫代酰胺部分的AA的强健合成,并将其用作努力的一部分
确定硫代维达胺大环的立体化学。硫代病毒胺是有效的和选择性的。
含有AA氨基半胱氨酸的抗癌肽。该残基将使用氧化剂构建
将被用于构建16个硫代病毒胺候选结构的脱羧基消除
使用SPPS的大循环。这种方法是创新的,因为它颠覆了传统的观点,即
氨基酸不太适合加入到生物活性多肽中,因为人们认为它们对
生物亲核剂,如硫醇。拟议研究的意义在于它能够促进
使用含有氨基酸的多肽来解决重要的药物化学和化学生物学问题。是这样的
研究可能包括设计能够破坏蛋白质-蛋白质的蛋白质分解稳定的多肽。
与人类疾病相关的相互作用或开发有效和稳定的类似物
硫代病毒胺。该项目旨在提高以前未得到充分利用的AA的知名度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN L CASTLE其他文献
STEVEN L CASTLE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN L CASTLE', 18)}}的其他基金
TANDEM EPOXIDE-OLEFIN CYCLIZATION-PINACOL REARRANGEMENT
串联环氧化物-烯烃环化-频哪醇重排
- 批准号:
6385253 - 财政年份:2001
- 资助金额:
$ 43.65万 - 项目类别:
TANDEM EPOXIDE-OLEFIN CYCLIZATION-PINACOL REARRANGEMENT
串联环氧化物-烯烃环化-频哪醇重排
- 批准号:
6209541 - 财政年份:2000
- 资助金额:
$ 43.65万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:














{{item.name}}会员




