Understanding Multi-Layer Learning in a Biological Circuit

了解生物回路中的多层学习

基本信息

  • 批准号:
    10053457
  • 负责人:
  • 金额:
    $ 152.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Work on learning in neural systems has focused largely on the effects of plasticity at synapses that provide direct input to the neurons being studied. Learning a model of the environment or a complex skill, however, relies on plasticity that is widely distributed and may occur at synapses far from the neurons driving decisions or actions. As is well-known from multi-layer (or 'deep') artificial networks, distributing learning over multiple layers is substantially more powerful but also more difficult to implement than learning at a single layer. The fact that computer scientists have solved such problems has revolutionized artificial intelligence and is rapidly reshaping the human world. Understanding how the brain solves such problems is, undoubtedly, one of the biggest challenges facing neuroscience today. However, progress along these lines has been slow, due in part to the high degree of complexity of learning and memory circuits in mammals, such as hippocampus and neocortex, that have been a major focus of research. This proposal applies integrated experimental and theoretical approaches to a system with unique advantages for understanding learning in multi-layer networks. The electrosensory lobe (ELL) of mormyrid fish is the site of a continual learning process that predicts and cancels self-generated sensory input in order to enhance detection of behaviorally-relevant stimuli. Building on this knowledge, we propose to develop a model of the ELL spanning from cellular biophysics to network dynamics with the goal of explaining how synaptic plasticity widely distributed across processing layers and cell types gives rise to learning. To accomplish this, we will leverage cutting-edge approaches for mapping synaptic connectivity at high-resolution and monitoring neural population activity over the entire time course of learning. The proposed research is expected to yield general insight into how sophisticated forms of learning are implemented in neural circuits.
神经系统学习的研究主要集中在突触可塑性的影响上 为被研究的神经元提供直接输入。学习环境模型或 然而,复杂的技能依赖于广泛分布的可塑性,可能发生在突触上 远离神经元驱动决策或行动。众所周知,多层(或“深”) 人工网络,将学习分布在多个层上, 也比单层学习更难实现。计算机科学家 已经解决了这些问题,彻底改变了人工智能,并正在迅速重塑 人类世界了解大脑如何解决这些问题,无疑是一个 当今神经科学面临的最大挑战然而,沿着这些路线取得的进展 缓慢,部分原因是哺乳动物的学习和记忆回路高度复杂, 如海马体和新皮层,这一直是研究的主要焦点。这项建议 将综合实验和理论方法应用于具有独特优势的系统 来理解多层网络中的学习。电感觉叶(ELL) 鱼是一个持续学习的过程,预测和取消自我产生的感觉, 输入,以增强对行为相关刺激的检测。基于这些知识, 我们建议开发一个从细胞生物物理学到网络的ELL模型 动力学的目的是解释突触可塑性如何广泛分布在处理 层和细胞类型引起学习。为了实现这一目标,我们将利用先进的 以高分辨率映射突触连接和监测神经元的方法 在整个学习过程中的人口活动。预计拟议的研究将 对复杂的学习形式如何在神经回路中实现产生一般性的洞察。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laurence F. Abbott其他文献

Laurence F. Abbott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laurence F. Abbott', 18)}}的其他基金

Mechanisms for Internal Models in a Cerebellum-like Circuit
类小脑回路中的内部模型机制
  • 批准号:
    10633058
  • 财政年份:
    2021
  • 资助金额:
    $ 152.15万
  • 项目类别:
Mechanisms for internal models in a cerebellum-like circuit
类小脑回路中的内部模型机制
  • 批准号:
    10359759
  • 财政年份:
    2021
  • 资助金额:
    $ 152.15万
  • 项目类别:
Mechanisms for internal models in a cerebellum-like circuit
类小脑回路中的内部模型机制
  • 批准号:
    10206425
  • 财政年份:
    2021
  • 资助金额:
    $ 152.15万
  • 项目类别:
Understanding Multi-Layer Learning in a Biological Circuit
了解生物回路中的多层学习
  • 批准号:
    10709766
  • 财政年份:
    2020
  • 资助金额:
    $ 152.15万
  • 项目类别:
Modeling multi-area dynamics during motor control
电机控制期间的多区域动态建模
  • 批准号:
    9983209
  • 财政年份:
    2017
  • 资助金额:
    $ 152.15万
  • 项目类别:
Modeling multi-area dynamics during motor control
电机控制期间的多区域动态建模
  • 批准号:
    10224734
  • 财政年份:
    2017
  • 资助金额:
    $ 152.15万
  • 项目类别:
Network Models for Timing and Sequence Generation
用于定时和序列生成的网络模型
  • 批准号:
    8613321
  • 财政年份:
    2011
  • 资助金额:
    $ 152.15万
  • 项目类别:
Network Models for Timing and Sequence Generation
用于定时和序列生成的网络模型
  • 批准号:
    8431823
  • 财政年份:
    2011
  • 资助金额:
    $ 152.15万
  • 项目类别:
Network Models for Timing and Sequence Generation
用于定时和序列生成的网络模型
  • 批准号:
    8260840
  • 财政年份:
    2011
  • 资助金额:
    $ 152.15万
  • 项目类别:
Network Models for Timing and Sequence Generation
用于定时和序列生成的网络模型
  • 批准号:
    8827847
  • 财政年份:
    2011
  • 资助金额:
    $ 152.15万
  • 项目类别:

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 152.15万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 152.15万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 152.15万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 152.15万
  • 项目类别:
    Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
  • 批准号:
    2889694
  • 财政年份:
    2023
  • 资助金额:
    $ 152.15万
  • 项目类别:
    Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 152.15万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 152.15万
  • 项目类别:
    Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 152.15万
  • 项目类别:
    Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 152.15万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 152.15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了