Modeling multi-area dynamics during motor control

电机控制期间的多区域动态建模

基本信息

  • 批准号:
    9983209
  • 负责人:
  • 金额:
    $ 32.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-25 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Elucidating the neural basis of behavior is a fundamental goal of neuroscience. Progress towards this goal is complicated by the fact that most behaviors arise from interactions between a number of distributed and intercon- nected brain regions. Project 4 uses models that are tightly linked to experimental data to address this issue in the context of sequential motor behaviors. Many complex motor behaviors can be decomposed into sequences of stereotyped components or `motifs' that can be rearranged to produce a wide variety of other behaviors. To create a sequence from existing motifs, the motor system must generate the required neural activity while monitoring movement progress in order to time transitions between different motifs appropriately. This modeling project is aimed at developing and testing a model of interacting networks representing motor cortex, motor thalamus and input and output structures of the basal ganglia (i.e., striatum and GPi/SNr) that can autonomously generate a wide variety of motifs, string them together flexibly into sequences, and monitor ongoing activity to assure that transitions between motifs occur when they should. In this model, the loop between cortex and thalamus creates a single cortico-thalamic network for the execution of multiple behavioral motifs. Critically, this cortico-thalamic network is not a fixed entity but can be modified by the inhibitory output of the basal ganglia. The motif that the cortico-thalamic network produces at any given time is determined by which set of neurons in the motor thalamus is not being inhibited by GPi/SNr activity at that time. Different motifs will be selected by changing the pattern of activity in the GPi/SNr, thereby modifying the pattern of inhibition in the motor thalamus. Thus, the role of the GPi/SNr in the model is to maintain the current motif and to drive transitions to the next motif in a sequence. Models of the GPi/SNr will be used to study and propose mechanisms by which they sustain activity during a motif and switch it between motifs. Striatum will be modeled as a monitor of cortical activity with the role of deter- mining when one motif has ended and the next can begin. When an appropriate opportunity has been identified, transient activity in the striatum will trigger the system to switch from one motif to another through its projections to the GPi/SNr. This modeling project is tightly matched to the overall goal of this group proposal, a detailed, quantitative understanding of the production of behavior by the motor system. Because the model relates the activities of neural populations in multiple regions (motor cortex, motor thalamus, GPi/SNr and striatum), it will provide many predictions that will be tested using the experimental data produced by the other projects within this group proposal. The results of these tests will be used to refine the model and, in addition, predictions of the model will guide new experimental approaches. The cycle of deriving constraints from experiments and predictions from models will continue until we arrive at an illuminating and biologically plausible circuit-level de- scription that accounts for what we observe in experiments and lends new insight into how flexible sequential motor sequences are generated.
阐明行为的神经基础是神经科学的基本目标。朝着这一目标取得的进展是 复杂的事实是,大多数行为都是由多个分布式和跨环境的 相互连接的大脑区域。项目4使用与实验数据紧密关联的模型来解决 顺序运动行为的背景。许多复杂的运动行为可以分解成以下序列 陈规陋习的成分或‘主题’,可以重新安排,以产生各种其他行为。要创建 作为现有基序的序列,运动系统必须在监测的同时产生所需的神经活动 运动进度,以便对不同主题之间的过渡进行适当的计时。这个建模项目是 旨在开发和测试代表运动皮质、运动丘脑和 基底节的输入和输出结构(即纹状体和GPI/SNR),可以自主地产生 各种各样的基序,将它们灵活地串在一起fl成序列,并监控正在进行的活动,以确保 主题之间的转换在它们应该发生的时候发生。在这个模型中,大脑皮质和丘脑之间的环路产生 一个单一的皮质-丘脑网络,用于执行多个行为主题。关键的是,大脑皮质-丘脑 网络不是一个被抑制的实体,但可以被基底节的抑制性输出所改变(fifi)。这个主题就是 在任何给定时间产生的皮质-丘脑网络由运动丘脑中的哪一组神经元决定 不受当时GPI/SNR活性的抑制。不同的图案将通过改变图案来选择 改变GPI/SNR的活性,从而改变运动丘脑的抑制模式。因此,该组织的作用 模型中的GPI/SNR是为了保持当前基序,并驱动向序列中的下一个基序的过渡。 GPI/SNR的模型将被用来研究和提出它们在 主题,并在主题之间进行切换。纹状体将被模拟为皮质活动的监测器,其作用是阻止- 当一个主题已经结束而下一个主题可以开始的时候挖掘。当已经识别出适当的机会时,fi, 纹状体的短暂活动将触发系统通过其投射从一个基序切换到另一个基序 至GPI/SNR。这个建模项目与这个小组提案的总体目标紧密匹配, 对运动系统所产生的行为的定量理解。因为该模型将 神经群体在多个区域(运动皮质、运动丘脑、GPI/SNR和纹状体)的活动,它将 提供许多预测,这些预测将使用以下其他项目产生的实验数据进行测试 这个团体提案。这些测试的结果将被用于对模型进行再验证(fine),此外还将用于预测 该模型的建立将指导新的实验方法。从实验和实验中得出约束的循环 来自模型的预测将继续下去,直到我们得出一个具有启发性和生物学上可信的电路级去... 解释了我们在实验中观察到的内容的脚本,并为fl如何扩展顺序提供了新的见解 生成运动序列。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laurence F. Abbott其他文献

Laurence F. Abbott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laurence F. Abbott', 18)}}的其他基金

Mechanisms for Internal Models in a Cerebellum-like Circuit
类小脑回路中的内部模型机制
  • 批准号:
    10633058
  • 财政年份:
    2021
  • 资助金额:
    $ 32.64万
  • 项目类别:
Mechanisms for internal models in a cerebellum-like circuit
类小脑回路中的内部模型机制
  • 批准号:
    10359759
  • 财政年份:
    2021
  • 资助金额:
    $ 32.64万
  • 项目类别:
Mechanisms for internal models in a cerebellum-like circuit
类小脑回路中的内部模型机制
  • 批准号:
    10206425
  • 财政年份:
    2021
  • 资助金额:
    $ 32.64万
  • 项目类别:
Understanding Multi-Layer Learning in a Biological Circuit
了解生物回路中的多层学习
  • 批准号:
    10053457
  • 财政年份:
    2020
  • 资助金额:
    $ 32.64万
  • 项目类别:
Understanding Multi-Layer Learning in a Biological Circuit
了解生物回路中的多层学习
  • 批准号:
    10709766
  • 财政年份:
    2020
  • 资助金额:
    $ 32.64万
  • 项目类别:
Modeling multi-area dynamics during motor control
电机控制期间的多区域动态建模
  • 批准号:
    10224734
  • 财政年份:
    2017
  • 资助金额:
    $ 32.64万
  • 项目类别:
Network Models for Timing and Sequence Generation
用于定时和序列生成的网络模型
  • 批准号:
    8613321
  • 财政年份:
    2011
  • 资助金额:
    $ 32.64万
  • 项目类别:
Network Models for Timing and Sequence Generation
用于定时和序列生成的网络模型
  • 批准号:
    8431823
  • 财政年份:
    2011
  • 资助金额:
    $ 32.64万
  • 项目类别:
Network Models for Timing and Sequence Generation
用于定时和序列生成的网络模型
  • 批准号:
    8260840
  • 财政年份:
    2011
  • 资助金额:
    $ 32.64万
  • 项目类别:
Network Models for Timing and Sequence Generation
用于定时和序列生成的网络模型
  • 批准号:
    8827847
  • 财政年份:
    2011
  • 资助金额:
    $ 32.64万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.64万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 32.64万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 32.64万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.64万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.64万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 32.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 32.64万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 32.64万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 32.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 32.64万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了