An inflammation-induced fibrosis-on-chip system for the testing of anti-fibrosis drugs
用于测试抗纤维化药物的炎症诱导纤维化芯片系统
基本信息
- 批准号:10054573
- 负责人:
- 金额:$ 46.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAnimal ModelAnimalsAutomobile DrivingBiological MarkersBiological ModelsBiologyBiomechanicsBlood VesselsCellsClinicClinical TrialsCollaborationsCoupledDataDevelopmentDevice or Instrument DevelopmentDiseaseDrug Delivery SystemsDrug ScreeningDrug TargetingEventFDA approvedFibroblastsFibrosisGoalsHealthHistologyHumanIn VitroInflammationInflammatoryJointsLaboratoriesLungMacrophage ActivationMeasurementMediatingMediator of activation proteinMicrofluidicsModelingMyofibroblastPathogenesisPathologyPathway interactionsPerformancePharmaceutical PreparationsPhysiologicalProcessPublicationsPulmonary FibrosisResearchResearch PersonnelStressStructure of parenchyma of lungSurfaceSystemTechnologyTestingTherapeuticTherapeutic EffectTissue EngineeringTissue ModelTissuesTranslationsTreatment Efficacybasecell typecomparative efficacydesigndrug actiondrug candidatedrug discoverydrug efficacyfibrogenesisidiopathic pulmonary fibrosisimprovedin vitro Modelinnovationinterstitialmacrophagemonocytenovelnovel strategiesorgan on a chippre-clinicalpreclinical developmentscreeningtargeted treatmenttherapeutic target
项目摘要
Idiopathic pulmonary fibrosis (IPF), characterized by the progressive stiffening of lung tissues, is a severe
disease with no cure. The understanding of the IPF pathogenesis is incomplete, but inflammation has been
identified as one of the major mediators and has been proposed as a therapeutic target for the development of
anti-IPF drugs. However, since existing in vitro fibrosis models are composed of limited cell types and utilize
rigid 2D culture formats, they cannot recapitulate the interaction between multiple profibrotic cells (macrophage,
myofibroblast) and the physiological stresses (shear flow, matrix stiffening, tissue contraction) in the fibrotic
tissue. As a result, these models are not able to provide the efficacy readout on the “therapeutic targets” of the
anti-fibrosis drugs. The objective of this renewal project is to develop a co-cultured fibrotic microtissue system
that can model the fibrogenesis event caused by the inflammation and predict the therapeutic efficacy of the
anti-fibrotic drugs that target inflammation pathways. Investigators have previously developed a static, mono-
cultured fibrotic microtissue system that can recapitulate the late-stage fibrogenic changes in tissue
biomechanics and histology caused by myofibroblast differentiation. However, this system is limited in
predicting the efficacy of drugs that target important early stage fibrogenesis events. In the current project,
investigators propose to expand the fibrosis modeling capacity of the existing system by including early-stage
fibrogenesis events, such as flow-mediated profibrotic activation of the macrophages and inflammation induced
myofibroblast differentiation. With this improved modeling capability, the new system will allow the examination
of the drug efficacy on the inflammatory pathways, thus validating the mechanism of action of the drug on the
intended target. The aims will include to develop a co-cultured fibrotic microtissue system that can model
inflammation-induced fibrogenesis of the lung interstitial tissue and to evaluate the screening capacity of the
microtissue system for anti-fibrosis drugs that target the inflammatory pathway. It is expected that such a
system will be able to simulate the therapeutic effects of the drug candidates on inflammatory pathways, thus
allowing the delineation of the therapeutic mechanism of the drug. Such a new approach can significantly
expedite the translation of anti-fibrotic therapies from the laboratories to the clinics.
1
特发性肺纤维化(IPF)是一种严重的肺纤维化,其特征在于肺组织的进行性硬化,
无法治愈的疾病对IPF发病机制的理解尚不完全,但炎症已被广泛接受。
已被确定为主要介质之一,并已被提议作为发展的治疗靶点。
抗IPF药物。然而,由于现有的体外纤维化模型由有限的细胞类型组成,并且利用了
刚性的2D培养形式,它们不能再现多个促纤维化细胞(巨噬细胞,
肌纤维母细胞)和生理应力(剪切流,基质硬化,组织收缩)在纤维化
组织.因此,这些模型无法提供药物“治疗靶点”的功效读数
抗纤维化药物本更新项目的目标是开发一种共培养的纤维化微组织系统
其可以模拟由炎症引起的纤维发生事件并预测免疫调节剂的治疗功效。
针对炎症通路的抗纤维化药物。研究人员以前开发了一种静态的,单声道的,
培养的纤维化微组织系统,其可以再现组织中的晚期纤维化变化
肌成纤维细胞分化引起的生物力学和组织学变化。然而,该系统局限于
预测靶向重要的早期纤维发生事件的药物的功效。在目前的项目中,
研究人员建议通过包括早期阶段的纤维化模型来扩展现有系统的纤维化建模能力,
纤维发生事件,如流动介导的巨噬细胞的促纤维化活化和炎症诱导的纤维化。
肌成纤维细胞分化有了这种改进的建模能力,新系统将允许检查
药物对炎症通路的功效,从而验证药物对炎症通路的作用机制。
预定目标。其目标将包括开发一种共培养的纤维化微组织系统,
炎症诱导的肺间质组织纤维化,并评估筛选能力,
微组织系统的抗纤维化药物的目标炎症途径。预期这样的
系统将能够模拟候选药物对炎症途径的治疗效果,
从而能够描述药物的治疗机制。这种新方法可以大大
加快抗纤维化疗法从实验室向诊所的转化。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruogang Zhao其他文献
Ruogang Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruogang Zhao', 18)}}的其他基金
Modeling pulmonary fibrosis progression caused by differential mechanical stretch
模拟差异机械拉伸引起的肺纤维化进展
- 批准号:
10677845 - 财政年份:2022
- 资助金额:
$ 46.1万 - 项目类别:
An inflammation-induced fibrosis-on-chip system for the testing of anti-fibrosis drugs
用于测试抗纤维化药物的炎症诱导纤维化芯片系统
- 批准号:
10241534 - 财政年份:2020
- 资助金额:
$ 46.1万 - 项目类别:
Fibrotic microtissue chips for screening of anti-fibrotic therapies
用于筛选抗纤维化疗法的纤维化微组织芯片
- 批准号:
9121552 - 财政年份:2015
- 资助金额:
$ 46.1万 - 项目类别:
Fibrotic microtissue chips for screening of anti-fibrotic therapies
用于筛选抗纤维化疗法的纤维化微组织芯片
- 批准号:
9270551 - 财政年份:2015
- 资助金额:
$ 46.1万 - 项目类别:
Fibrotic microtissue chips for screening of anti-fibrotic therapies
用于筛选抗纤维化疗法的纤维化微组织芯片
- 批准号:
8964276 - 财政年份:2015
- 资助金额:
$ 46.1万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




