Modeling pulmonary fibrosis progression caused by differential mechanical stretch
模拟差异机械拉伸引起的肺纤维化进展
基本信息
- 批准号:10677845
- 负责人:
- 金额:$ 39.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-05 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdenovirusesAdoptedAffectAlveolarAlveolusAnimalsAreaBiomechanicsBleomycinCell Culture TechniquesCellsCessation of lifeComplexComputer ModelsDataDevelopmentDevicesDiseaseDisease ProgressionEngineeringEvolutionFibrosisGrowthHumanImageIn VitroLungLung diseasesLung fibrogenesisMapsMechanicsMembraneMicroscopicModelingOrganPatternPopulationProfibrotic signalProgressive DiseasePulmonary FibrosisPulmonary PathologyRattusResearchResearch PersonnelResolutionSamplingSliceSpatial DistributionStretchingStructureStructure of parenchyma of lungSystemTechniquesTestingThickTissue EngineeringTissue ModelTissuesTransforming Growth Factor betaVacuumanimal tissuecell growthcell injurycostdesignepithelial injuryfibrotic lungflexibilityidiopathic pulmonary fibrosisimprovedin vitro Modelin vivoinnovationlung injurymechanotransductionmouse modelpreservationreconstitutionscaffoldspatiotemporaltherapy development
项目摘要
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with no cure. IPF development follows a
unique pattern with fibrosis starting at the lung periphery and progressing toward the lung center. Little is
known about the mechanism underlying the periphery-to-center progression of the disease. Recent studies
suggest that the higher level of parenchymal expansion (strain) in the lung periphery serve to amplify and
perpetuate the progression of fibrosis upon initial lung injury. Systematic inquiry of the spatiotemporal
progression of pulmonary fibrosis has been challenging and cost prohibitive, because (1) correlative data on
both lung pathology and lung mechanics are difficult to obtain due to the prolonged disease progression in
human; (2) the most commonly used mouse model of bleomycin-induced fibrosis spontaneously resolves and
therefore fails to fully reflect human fibrosis, and (3) current in vitro lung tissue models do not reproduce an in
vivo-like strain gradient and the complex biomechanics existing in the native alveolar structure. The objective
of this project is to understand the spatiotemporal relation between pulmonary fibrosis and mechanical stretch
in the lung and develop a stretched engineered lung slice (ELS) model to study the multiscale biomechanical
mechanism of differential stretch-induced spatial progression of pulmonary fibrosis. The main hypothesis is
that the high level mechanical stretch at the lung periphery amplifies the pro-fibrotic signaling in injured lung
cells, thus initiating fibrosis and perpetuating the periphery-to-center fibrosis progression in the lung. Recently,
investigator’s team have adopted decellularization technique to create ELSs that support the long term growth
of lung cells in structurally-persevered human lung scaffolds. To utilize the ELS in the study of the fibrosis
progression, investigators plan to adopt a multiscale biomimicry strategy where the integration of ELS with a
gradient stretching device allows macroscopic modelling of the differential strains existing at the lung periphery
and lung center, and the preserved structure in the ELS allows microscopic modelling of the mechanical signal
transduction and cellular injury existing at the single alveolus level. The aims include characterizing the
spatiotemporal evolution of pulmonary fibrosis and mechanical stretch in both human and rat fibrotic lung
samples, developing a differentially-stretched, ELS model to test how realistic strain gradients affect spatial
progression of fibrosis upon epithelial injury, and understanding the multiscale biomechanical mechanism of
stretch induced fibrosis initiation and progression. The combination of mechanical stretching and computational
modeling with the lung slice model will substantially improve the utility of this underutilized model for lung
disease research, thus greatly facilitating the research efforts in pulmonary fibrosis and improving the
understanding of a major disease mechanism that is poorly examined in the past.
特发性肺纤维化(IPF)是一种无法治愈的进行性肺部疾病。指规数的发展遵循
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruogang Zhao其他文献
Ruogang Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruogang Zhao', 18)}}的其他基金
An inflammation-induced fibrosis-on-chip system for the testing of anti-fibrosis drugs
用于测试抗纤维化药物的炎症诱导纤维化芯片系统
- 批准号:
10054573 - 财政年份:2020
- 资助金额:
$ 39.39万 - 项目类别:
An inflammation-induced fibrosis-on-chip system for the testing of anti-fibrosis drugs
用于测试抗纤维化药物的炎症诱导纤维化芯片系统
- 批准号:
10241534 - 财政年份:2020
- 资助金额:
$ 39.39万 - 项目类别:
Fibrotic microtissue chips for screening of anti-fibrotic therapies
用于筛选抗纤维化疗法的纤维化微组织芯片
- 批准号:
9121552 - 财政年份:2015
- 资助金额:
$ 39.39万 - 项目类别:
Fibrotic microtissue chips for screening of anti-fibrotic therapies
用于筛选抗纤维化疗法的纤维化微组织芯片
- 批准号:
8964276 - 财政年份:2015
- 资助金额:
$ 39.39万 - 项目类别:
Fibrotic microtissue chips for screening of anti-fibrotic therapies
用于筛选抗纤维化疗法的纤维化微组织芯片
- 批准号:
9270551 - 财政年份:2015
- 资助金额:
$ 39.39万 - 项目类别:
相似海外基金
cGAS-STING Pathway Targeting Replicative Adenoviruses with CD46 Tropism and AFP Promoter Conditional Replication Restriction for the Treatment of Hepatocellular Carcinoma
cGAS-STING 通路靶向具有 CD46 趋向性和 AFP 启动子的复制腺病毒条件性复制限制用于治疗肝细胞癌
- 批准号:
10436626 - 财政年份:2021
- 资助金额:
$ 39.39万 - 项目类别:
Glioma therapy with oncolytic adenoviruses and immunometabolic adjuvants
溶瘤腺病毒和免疫代谢佐剂治疗胶质瘤
- 批准号:
10557162 - 财政年份:2021
- 资助金额:
$ 39.39万 - 项目类别:
Molecular therapy of replication-competent adenoviruses targeting characteristic gene mutations found in mesothelioma
针对间皮瘤中发现的特征基因突变的具有复制能力的腺病毒的分子疗法
- 批准号:
21K08199 - 财政年份:2021
- 资助金额:
$ 39.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Glioma therapy with oncolytic adenoviruses and immunometabolic adjuvants
溶瘤腺病毒和免疫代谢佐剂治疗胶质瘤
- 批准号:
10330464 - 财政年份:2021
- 资助金额:
$ 39.39万 - 项目类别:
Structural characterization of nucleoprotein cores of human adenoviruses
人腺病毒核蛋白核心的结构表征
- 批准号:
9807741 - 财政年份:2019
- 资助金额:
$ 39.39万 - 项目类别:
Molecular biology and pathogenesis of fowl adenoviruses
禽腺病毒的分子生物学和发病机制
- 批准号:
41625-2013 - 财政年份:2018
- 资助金额:
$ 39.39万 - 项目类别:
Discovery Grants Program - Individual
The therapeutic strategies with augmented replications of oncolytic adenoviruses for malignant mesothelioma
溶瘤腺病毒增强复制治疗恶性间皮瘤的治疗策略
- 批准号:
18K15937 - 财政年份:2018
- 资助金额:
$ 39.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular biology and pathogenesis of fowl adenoviruses
禽腺病毒的分子生物学和发病机制
- 批准号:
41625-2013 - 财政年份:2017
- 资助金额:
$ 39.39万 - 项目类别:
Discovery Grants Program - Individual
Exploring the effects of nutrient deprivation on T cells and oncolytic adenoviruses, in order to create immune activators for tumour therapy
探索营养剥夺对 T 细胞和溶瘤腺病毒的影响,以创造用于肿瘤治疗的免疫激活剂
- 批准号:
1813152 - 财政年份:2016
- 资助金额:
$ 39.39万 - 项目类别:
Studentship
Research on detection of novel adenoviruses by genetic methods
新型腺病毒的基因检测研究
- 批准号:
16K09118 - 财政年份:2016
- 资助金额:
$ 39.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




