Early Mobilization: Operationalizing Big Data & Implementation Science to Lead Expansion to ICUs (E-MOBILE-ICU)

早期动员:运用大数据

基本信息

  • 批准号:
    10055025
  • 负责人:
  • 金额:
    $ 16.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Almost 800,000 critically ill patients require mechanical ventilation every year and three quarters of the survivors suffer from persistent disability, which poses a major public health problem as critical care becomes more widely utilized and available. Although early mobilization, which engages patients in physical activity during mechanical ventilation, is a promising evidence-based intervention that may prevent disability, less than ten percent of pa- tients ever get out of bed. This proposal aims to apply precision medicine to identify patients who are most likely to benefit from early mobilization and elucidate how it can be implemented successfully to extend the benefits of early mobilization to critical care survivors at greatest risk for long-term disability. I hypothesize that this re- source-intensive intervention can be applied with greater precision to a subset of patients most likely to bene- fit, and that implementation science strategies can be devised to successfully drive adoption of this interven- tion beyond a clinical trial setting. I will test my hypothesis in three aims: Aim 1) I will identify the optimal critical illness phenotype for implementation of early mobilization by using cutting-edge machine learning methods; Aim 2) I will determine the effect of early mobilization on long-term functional disability to incentivize adoption of this practice; Aim 3) I will determine the barriers and facilitators of implementation of early mobilization across five institutions to identify the contextual features associated with successful implementation to inform strategies that can bridge the gap between evidence base and clinical practice. My long-term goal is to mitigate the com- plications of critical illness with clinical trials using precision-based methods to identify at-risk and yet apt-to- benefit populations paired with implementation science methodologies to illuminate how to bring these interven- tions to the bedside. To accomplish this, I have assembled an exceptional interdisciplinary team of mentors (Drs. Vineet Arora, Matthew Churpek, and John Kress) and advisors (Drs. Shyam Prabhakaran, Donald Hedeker, Laura Damschroder, and Matthias Eikermann) who have a track record of NIH-funding and successful mentor- ship of post-doctoral candidates. I intend to build on my foundation as an accomplished clinical trialist and have formulated an in-depth career development plan to gain expertise in machine learning methods to identify differ- ential treatment effects (Churpek and Prabhakaran), longitudinal data analysis, (Arora and Hedeker), and imple- mentation science methods (Arora, Prabhakaran, and Damschroder) to craft strategies that bring complex mul- tidisciplinary interventions from clinical trials (Kress and Eikermann) to everyday ICU care. Completion of this proposal will train me to fill an unmet need defined by a recent National Academy of Medicine publication which indicated that identification of differential treatment effects must be paired with rigorous implementation to help transition evidence base to routine clinical care. Equipped with advanced statistical skills and implementation science approaches, I will be able to design hybrid effectiveness-implementation trials to target and implement complex multidisciplinary interventions to vulnerable populations in future R01 level applications.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bhakti Kiran Patel其他文献

Bhakti Kiran Patel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bhakti Kiran Patel', 18)}}的其他基金

Early Mobilization: Operationalizing Big Data & Implementation Science to Lead Expansion to ICUs (E-MOBILE-ICU)
早期动员:运用大数据
  • 批准号:
    10675629
  • 财政年份:
    2020
  • 资助金额:
    $ 16.24万
  • 项目类别:
Early Mobilization: Operationalizing Big Data & Implementation Science to Lead Expansion to ICUs (E-MOBILE-ICU)
早期动员:运用大数据
  • 批准号:
    10445278
  • 财政年份:
    2020
  • 资助金额:
    $ 16.24万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 16.24万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 16.24万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了