Decoding mechanisms of phenotypic memory in single cells

单细胞表型记忆的解码机制

基本信息

  • 批准号:
    10018956
  • 负责人:
  • 金额:
    $ 40.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-16 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Drug resistance and metastasis are both deadly processes in cancer that remain poorly understood. In many instances, resistance or metastasis arise from a small subset of the cells within an individual's tumor that behave differently from the rest. Because these cells are only a small fraction of the cells in a patient's tumor, they cannot be sequenced or profiled using traditional methods. Thus, single-cell analysis provides a window into the variability between cells that underlie these harmful processes; however, methods such as single-cell sequencing are performed after fixing or lysing of the cells, which prevents researchers from being able to perform further downstream analysis such as testing the cells for resistant or invasive phenotypes. These efforts catalogue the molecular variability at the single-cell level, but fail to determine how these variable features relate to the phenotypes present in single cells. My research addresses this hurdle via development of a unbiased, high-throughput sequencing method for identifying variability that is sufficiently ingrained in single cells to generate phenotypes. This approach is based upon Luria and Delbrück's 1943 fluctuation analysis. It combines their clever experimental design with the modern twist of high-throughput sequencing assays. When combined with RNA sequencing, our method (MemorySeq) allows us to quantify gene expression dynamics in order to find single-cell gene expression states that are slowly fluctuating and heritable through multiple cell divisions. We hypothesize that these slowly fluctuating gene expression states allow for significant and ingrained changes in single-cells, which are necessary to generate the detrimental phenotypes of resistance and metastasis in cancer. We aim to use our new MemorySeq method to 1) test the hypothesis that long-lived fluctuations in gene expression underly important phenotypes in cancer, specifically drug resistance and invasion, and to 2) identify transcription factors, kinases, and epigenetic regulator proteins responsible for generating and maintaining these long-lived fluctuations in gene expression. These aims will be accomplished using a highly innovative and complementary approach that combines high-throughput sequencing, CRISPR/Cas9 genetic screening, and single-cell imaging. This line of research will determine the single-cell gene expression signatures of rare resistant and invasive populations in multiple cancer types, and will enumerate the transcription factors, kinases, and epigenetic regulator proteins that govern these expression states. The results of this work will be significant to the cancer research community as they will yield new therapeutic targets to specifically inhibit or destroy these undesirable rare cell populations. Furthermore, this conceptual framework is generalizable and broadly accessible to the scientific research community. In the future, these fluctuation analysis methods can be applied to unravel the contribution of slowly fluctuating gene expression states in other biological processes such as development, wound healing, and cell fate decisions.
项目摘要 耐药性和转移都是癌症中的致命过程,人们对此知之甚少。在 在许多情况下,耐药或转移来自个体肿瘤内的一小部分细胞, 行为与其他人不同。因为这些细胞只是患者肿瘤细胞的一小部分, 不能使用传统方法对它们进行测序或分析。因此,单细胞分析提供了一个窗口 这些有害过程背后的细胞之间的变异性;然而,诸如单细胞 测序是在固定或裂解细胞后进行的,这使得研究人员无法 进行进一步的下游分析,例如测试细胞的抗性或侵袭性表型。这些 这些努力在单细胞水平上对分子变异性进行了编目,但未能确定这些变量是如何产生的。 特征涉及存在于单细胞中的表型。 我的研究通过开发一种无偏见的高通量测序方法来解决这一障碍 用于鉴定在单细胞中足够根深蒂固以产生表型的变异性。这种方法 基于Luria和Delbrück 1943年的波动分析。它结合了他们聪明的实验设计, 高通量测序分析的现代转折。当与RNA测序相结合时,我们的方法 (MemorySeq)允许我们量化基因表达动态,以找到单细胞基因表达 这种状态是缓慢波动的,可以通过多次细胞分裂遗传。我们假设这些 波动的基因表达状态允许单细胞发生显著和根深蒂固的变化, 这是在癌症中产生抗性和转移的有害表型所必需的。我们的目标是利用我们的 一种新的MemorySeq方法:1)测试基因表达长期波动的假设, 癌症中的重要表型,特别是耐药性和侵袭,以及2)鉴定转录 因子,激酶和表观遗传调节蛋白负责产生和维持这些长寿命 基因表达的波动。这些目标将通过一个高度创新和 互补方法,结合高通量测序,CRISPR/Cas9基因筛选, 单细胞成像这项研究将确定罕见的单细胞基因表达特征, 耐药和侵袭性人群中的多种癌症类型,并将列举转录因子, 激酶和控制这些表达状态的表观遗传调节蛋白。 这项工作的结果将是重大的癌症研究界,因为他们将产生新的 治疗靶点以特异性抑制或破坏这些不期望的稀有细胞群。而且这 概念框架具有普遍性,科学研究界可以广泛使用。在 将来,这些波动分析方法可用于揭示缓慢波动基因的贡献 在其他生物学过程中的表达状态,如发育、伤口愈合和细胞命运决定。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sydney Shaffer其他文献

Sydney Shaffer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sydney Shaffer', 18)}}的其他基金

Decoding mechanisms of phenotypic memory in single cells
单细胞表型记忆的解码机制
  • 批准号:
    10471844
  • 财政年份:
    2019
  • 资助金额:
    $ 40.52万
  • 项目类别:
Decoding mechanisms of phenotypic memory in single cells
单细胞表型记忆的解码机制
  • 批准号:
    10238987
  • 财政年份:
    2019
  • 资助金额:
    $ 40.52万
  • 项目类别:
Decoding mechanisms of phenotypic memory in single cells
单细胞表型记忆的解码机制
  • 批准号:
    9794853
  • 财政年份:
    2019
  • 资助金额:
    $ 40.52万
  • 项目类别:
Decoding mechanisms of phenotypic memory in single cells
单细胞表型记忆的解码机制
  • 批准号:
    10693133
  • 财政年份:
    2019
  • 资助金额:
    $ 40.52万
  • 项目类别:
Rapid and highly sensitive influenza detection with RNA FISH
使用 RNA FISH 快速、高灵敏度地检测流感
  • 批准号:
    8909450
  • 财政年份:
    2015
  • 资助金额:
    $ 40.52万
  • 项目类别:
Rapid and highly sensitive influenza detection with RNA FISH
使用 RNA FISH 快速、高灵敏度地检测流感
  • 批准号:
    9045376
  • 财政年份:
    2015
  • 资助金额:
    $ 40.52万
  • 项目类别:

相似海外基金

University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
  • 批准号:
    10073243
  • 财政年份:
    2024
  • 资助金额:
    $ 40.52万
  • 项目类别:
    Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
  • 批准号:
    10752129
  • 财政年份:
    2024
  • 资助金额:
    $ 40.52万
  • 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
  • 批准号:
    2339201
  • 财政年份:
    2024
  • 资助金额:
    $ 40.52万
  • 项目类别:
    Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
  • 批准号:
    MR/Y008693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.52万
  • 项目类别:
    Research Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
  • 批准号:
    10076445
  • 财政年份:
    2023
  • 资助金额:
    $ 40.52万
  • 项目类别:
    Grant for R&D
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
  • 批准号:
    23K14783
  • 财政年份:
    2023
  • 资助金额:
    $ 40.52万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
  • 批准号:
    23KJ0394
  • 财政年份:
    2023
  • 资助金额:
    $ 40.52万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
  • 批准号:
    10639161
  • 财政年份:
    2023
  • 资助金额:
    $ 40.52万
  • 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
  • 批准号:
    10752441
  • 财政年份:
    2023
  • 资助金额:
    $ 40.52万
  • 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
  • 批准号:
    10867639
  • 财政年份:
    2023
  • 资助金额:
    $ 40.52万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了