Decoding mechanisms of phenotypic memory in single cells

单细胞表型记忆的解码机制

基本信息

  • 批准号:
    10238987
  • 负责人:
  • 金额:
    $ 40.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-16 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Drug resistance and metastasis are both deadly processes in cancer that remain poorly understood. In many instances, resistance or metastasis arise from a small subset of the cells within an individual's tumor that behave differently from the rest. Because these cells are only a small fraction of the cells in a patient's tumor, they cannot be sequenced or profiled using traditional methods. Thus, single-cell analysis provides a window into the variability between cells that underlie these harmful processes; however, methods such as single-cell sequencing are performed after fixing or lysing of the cells, which prevents researchers from being able to perform further downstream analysis such as testing the cells for resistant or invasive phenotypes. These efforts catalogue the molecular variability at the single-cell level, but fail to determine how these variable features relate to the phenotypes present in single cells. My research addresses this hurdle via development of a unbiased, high-throughput sequencing method for identifying variability that is sufficiently ingrained in single cells to generate phenotypes. This approach is based upon Luria and Delbrück's 1943 fluctuation analysis. It combines their clever experimental design with the modern twist of high-throughput sequencing assays. When combined with RNA sequencing, our method (MemorySeq) allows us to quantify gene expression dynamics in order to find single-cell gene expression states that are slowly fluctuating and heritable through multiple cell divisions. We hypothesize that these slowly fluctuating gene expression states allow for significant and ingrained changes in single-cells, which are necessary to generate the detrimental phenotypes of resistance and metastasis in cancer. We aim to use our new MemorySeq method to 1) test the hypothesis that long-lived fluctuations in gene expression underly important phenotypes in cancer, specifically drug resistance and invasion, and to 2) identify transcription factors, kinases, and epigenetic regulator proteins responsible for generating and maintaining these long-lived fluctuations in gene expression. These aims will be accomplished using a highly innovative and complementary approach that combines high-throughput sequencing, CRISPR/Cas9 genetic screening, and single-cell imaging. This line of research will determine the single-cell gene expression signatures of rare resistant and invasive populations in multiple cancer types, and will enumerate the transcription factors, kinases, and epigenetic regulator proteins that govern these expression states. The results of this work will be significant to the cancer research community as they will yield new therapeutic targets to specifically inhibit or destroy these undesirable rare cell populations. Furthermore, this conceptual framework is generalizable and broadly accessible to the scientific research community. In the future, these fluctuation analysis methods can be applied to unravel the contribution of slowly fluctuating gene expression states in other biological processes such as development, wound healing, and cell fate decisions.
项目概要 耐药性和转移都是癌症的致命过程,但人们对此仍知之甚少。在 在许多情况下,耐药性或转移源于个体肿瘤内的一小部分细胞,这些细胞 行为与其他人不同。因为这些细胞只占患者肿瘤细胞的一小部分, 无法使用传统方法对它们进行测序或分析。因此,单细胞分析提供了一个窗口 研究这些有害过程背后的细胞之间的变异性;然而,单细胞等方法 测序是在细胞固定或裂解后进行的,这使得研究人员无法 进行进一步的下游分析,例如测试细胞的耐药或侵袭表型。这些 努力对单细胞水平的分子变异进行分类,但未能确定这些变量如何 特征与单细胞中存在的表型有关。 我的研究通过开发公正的高通量测序方法解决了这个障碍 用于识别单细胞中充分根深蒂固的变异性以产生表型。这种方法是 基于 Luria 和 Delbrück 1943 年的波动分析。它将他们巧妙的实验设计与 高通量测序分析的现代转折。当与 RNA 测序相结合时,我们的方法 (MemorySeq) 使我们能够量化基因表达动态,以发现单细胞基因表达 通过多次细胞分裂缓慢波动且可遗传的状态。我们假设这些慢慢地 波动的基因表达状态允许单细胞发生显着且根深蒂固的变化,这些变化是 是产生癌症耐药和转移的有害表型所必需的。我们的目标是利用我们的 新的 MemorySeq 方法 1) 测试基因表达长期波动的假设 癌症中的重要表型,特别是耐药性和侵袭,以及 2) 识别转录 负责产生和维持这些长寿的因子、激酶和表观遗传调节蛋白 基因表达的波动。这些目标将通过高度创新和 结合高通量测序、CRISPR/Cas9 基因筛选和 单细胞成像。这一系列研究将确定稀有物种的单细胞基因表达特征 多种癌症类型中的耐药性和侵袭性人群,并将列举转录因子, 激酶和控制这些表达状态的表观遗传调节蛋白。 这项工作的结果对于癌症研究界具有重要意义,因为它们将产生新的成果 特异性抑制或破坏这些不良稀有细胞群的治疗靶点。此外,这 概念框架具有普遍性,可供科学研究界广泛使用。在 未来,这些波动分析方法可以用于揭示缓慢波动基因的贡献 其他生物过程中的表达状态,例如发育、伤口愈合和细胞命运决定。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sydney Shaffer其他文献

Sydney Shaffer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sydney Shaffer', 18)}}的其他基金

Decoding mechanisms of phenotypic memory in single cells
单细胞表型记忆的解码机制
  • 批准号:
    10471844
  • 财政年份:
    2019
  • 资助金额:
    $ 40.63万
  • 项目类别:
Decoding mechanisms of phenotypic memory in single cells
单细胞表型记忆的解码机制
  • 批准号:
    10018956
  • 财政年份:
    2019
  • 资助金额:
    $ 40.63万
  • 项目类别:
Decoding mechanisms of phenotypic memory in single cells
单细胞表型记忆的解码机制
  • 批准号:
    9794853
  • 财政年份:
    2019
  • 资助金额:
    $ 40.63万
  • 项目类别:
Decoding mechanisms of phenotypic memory in single cells
单细胞表型记忆的解码机制
  • 批准号:
    10693133
  • 财政年份:
    2019
  • 资助金额:
    $ 40.63万
  • 项目类别:
Rapid and highly sensitive influenza detection with RNA FISH
使用 RNA FISH 快速、高灵敏度地检测流感
  • 批准号:
    8909450
  • 财政年份:
    2015
  • 资助金额:
    $ 40.63万
  • 项目类别:
Rapid and highly sensitive influenza detection with RNA FISH
使用 RNA FISH 快速、高灵敏度地检测流感
  • 批准号:
    9045376
  • 财政年份:
    2015
  • 资助金额:
    $ 40.63万
  • 项目类别:

相似海外基金

University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
  • 批准号:
    10073243
  • 财政年份:
    2024
  • 资助金额:
    $ 40.63万
  • 项目类别:
    Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
  • 批准号:
    10752129
  • 财政年份:
    2024
  • 资助金额:
    $ 40.63万
  • 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
  • 批准号:
    2339201
  • 财政年份:
    2024
  • 资助金额:
    $ 40.63万
  • 项目类别:
    Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
  • 批准号:
    MR/Y008693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.63万
  • 项目类别:
    Research Grant
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
  • 批准号:
    23K14783
  • 财政年份:
    2023
  • 资助金额:
    $ 40.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
  • 批准号:
    23KJ0394
  • 财政年份:
    2023
  • 资助金额:
    $ 40.63万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
  • 批准号:
    10076445
  • 财政年份:
    2023
  • 资助金额:
    $ 40.63万
  • 项目类别:
    Grant for R&D
PLA2G2D Antibodies for Cancer Immunotherapy
用于癌症免疫治疗的 PLA2G2D 抗体
  • 批准号:
    10699504
  • 财政年份:
    2023
  • 资助金额:
    $ 40.63万
  • 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
  • 批准号:
    10491642
  • 财政年份:
    2023
  • 资助金额:
    $ 40.63万
  • 项目类别:
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
  • 批准号:
    10782567
  • 财政年份:
    2023
  • 资助金额:
    $ 40.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了