Reprogramming Cell Fate for Repair
重新编程细胞命运以进行修复
基本信息
- 批准号:10053960
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-11-12 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAdultAwardBrainBrain imagingCalciumCell Culture TechniquesCellsCerebral cortexChicagoClinical TrialsCollaborationsConfocal MicroscopyDataDevelopmental GeneDiseaseDistantElectrophysiology (science)EngineeringEngraftmentEpilepsyFire - disastersFundingGene TargetingGenerationsGoalsHippocampus (Brain)HumanIn VitroIndividualInjuryInterneuronsLabelLeadLentivirus VectorLesionLifeLightMeasuresMicroscopyModelingMorphologyNervous System TraumaNeurogliaNeuronsPerforant PathwayPhenotypePopulationPropertyPublishingRabies virusRattusRecording of previous eventsReportingResearchResearch PersonnelRestRetroviral VectorRodentSliceSpecific qualifier valueSpinal CordSurvival RateTherapeuticVisitWorkXenograft procedureadult neurogenesiscell typedesignexperienceexperimental studygene therapyin vivoindividualized medicineinduced pluripotent stem cellinnovationmouse modelnerve stem cellnervous system disorderneural graftneurogenesisneuronal circuitrynovel therapeuticsoligodendrocyte progenitorpainful neuropathyrecruitregenerativerelating to nervous systemrepairedsabbaticalstem cell biologystem cellssuccesstranscription factorvector
项目摘要
Project Summary
Central neurons are highly specialized and long-lived cells that form precise circuitry to support normal brain
function. The cerebral cortex does not add new neurons to maintain or increase function nor replace neurons
lost to injury or disease. Adult hippocampal neurogenesis in the human brain shows that adult neurogenesis is
possible. However, for human cerebral cortex, there are two possible strategies for neuronal addition, 1)
replace with exogenous neurons generated by cell culture or 2) recruit local endogenous cells by converting
them to neurons. The ultimate goal of this project is to investigate the second approach and to establish the
capacity for neuronal reprogramming of human glial progenitor cells and to assess their potential for functional
integration. For neuronal reprogramming to have therapeutic potential, it will be necessary to precisely
engineer neurons with a predictable and sustainable rate of survival. Aim 1 will address issues of survival
efficiency and subtype precision, developing an innovative vector toolbox to conduct these studies. But there
also remains the question of how authentic these induced neurons become. The forced transcription factor
expression may cause expression of certain neuronal phenotypes, including the capacity to fire an action
potential, without necessarily resulting in functional maturation. While our preliminary data demonstrate the
most advanced neuronal morphology reported to date, true circuit integration still remains to be shown. Aim 2
is designed to utilize current advances in connectivity tracing to investigate the state of integration of newly
engineered neurons into local and distant circuits. In particular Aim 2b will ask if newly engineered neurons are
capable of actively rewiring in the brain. We see application for this approach in rebuilding any damaged
circuit, including ultimately those experiencing dysregulation such as in epilepsy or neuropathic pain. There is
no information about the capacity to reprogram non-neuronal cells in the human brain into new neurons,
despite the compelling need for such data to advance therapeutic application of this approach. As we cannot
conduct these experiments in human brain, Aim 3 will develop a chimeric model, engrafting human cells into
rodent brain to allow targeting of human glial progenitor cells for neuronal reprogramming and evaluating the
extent of circuit integration with rat neurons. By using human iPSC-derived glial progenitor cells as our starting
population, it will be possible to expand these studies to address the impact of disease-specific factors as well
as providing a basis for eventual patient-specific therapies.
项目摘要
中枢神经元是高度专门化和长寿的细胞,它们形成精确的电路来支持正常的大脑
功能。大脑皮层不会增加新的神经元来维持或增加功能,也不会取代神经元
因受伤或疾病而失去的。人脑中的成年海马神经发生表明,成人的神经发生是
有可能。然而,对于人类大脑皮层,有两种可能的神经元添加策略:1)
替换为细胞培养产生的外源性神经元或2)通过转化来招募本地内源性细胞
将它们转化为神经元。这个项目的最终目标是调查第二种方法,并建立
人神经胶质前体细胞的神经元重编程能力及其功能潜能的评估
整合。为了使神经元重新编程具有治疗潜力,有必要精确地
使神经元具有可预测和可持续的存活率。目标1将解决生存问题
效率和亚型精确度,开发一个创新的载体工具箱来进行这些研究。但是在那里
还有一个问题是,这些诱导神经元变得有多真实。强制转录因子
表达可能导致某些神经元表型的表达,包括激发动作的能力
潜力,但不一定会导致功能成熟。虽然我们的初步数据表明
到目前为止,大多数高级神经元形态的报道,真正的电路整合仍有待展示。目标2
旨在利用当前在连接跟踪方面的进展来调查新的
将神经元改造成本地和远程电路。特别是,Aim 2b将询问新设计的神经元是否
能够主动地在大脑中重新连接。我们看到这种方法在重建任何受损的
最终包括那些经历失调的人,如癫痫或神经病理性疼痛。的确有
没有关于将人类大脑中的非神经细胞重新编程为新神经元的能力的信息,
尽管迫切需要这样的数据来推进这一方法的治疗应用。因为我们不能
在人脑中进行这些实验,Aim 3将开发一个嵌合模型,将人类细胞移植到
啮齿类动物大脑允许靶向人类神经胶质前体细胞进行神经元重新编程和评估
与大鼠神经元的电路整合程度。以人IPSC来源的神经胶质前体细胞为起点
对于人口,将有可能扩大这些研究,以解决疾病特有因素的影响
为最终针对患者的治疗提供了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Bruestle其他文献
Oliver Bruestle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant